摘要
近年来,随着医学影像与大数据的发展,通过人工智能来处理图像,从而给医生带来辅助性的诊断参考成为广大学者的研究热点。文章利用U-net网络对直肠癌CT影像进行智能分割,加入了图像增强、批归一化等技巧缓解过拟合现象,并通过多次实验确定最佳初始学习速率和卷积核数目,在验证集上的Dice系数达到0.9329。实验表明,U-Net对小数据集的医学图像分割有很好效果,对正负样本极度偏斜的数据集,使用Dice系数可以准确地衡量分割的相似程度。
In recent years,with the development of medical imaging and big data,the use of artificial intelligence to process images to bring auxiliary diagnostic references to doctors has become a research hotspot for scholars.In this paper,the U-net network is used to intelligently segment rectal cancer CT images.Techniques such as image enhancement and batch normalization are added to alleviate the over-fitting phenomenon.Through multiple experiments,the optimal initial learning rate and the number of convolution kernels are determined,and the Dice coefficient on the validation set reaches 0.9329.Experiments show that U-Net has a good effect on medical image segmentation of small data sets.In the extremely skewed data set of positive and negative samples,the Dice coefficient can accurately measure the similarity of the segmentation.
作者
谭俊杰
钟妤
黄泽斌
Tan Junjie;Zhong Yu;Huang Zebin(School of Electronic Information Engineering,Foshan University of Science and Technology,Foshan,Guangdong 528000,China)
出处
《计算机时代》
2020年第8期18-20,26,共4页
Computer Era
基金
省级大学生创新创业训练计划项目(基于深度网络的医学图像分类识别方法研究
XJ2019130)。