期刊文献+

稳健均值-方差模型的构建及比较研究 被引量:2

Construction and Comparative Research of Robust Mean-Variance Model
下载PDF
导出
摘要 传统均值-方差模型容易受到离群值的影响,导致计算结果与实际情况存在偏差。针对这一情况,文章将稳健统计的思想与传统均值-方差模型相结合,构建出稳健均值-方差模型,以达到减少或消除离群值对模型计算结果影响的目的,并进行了模拟和实证分析。结果表明:当数据中不存在离群值时,使用传统和稳健均值-方差模型进行投资决策的效果基本保持一致;当数据中存在离群值时,传统均值-方差模型容易受到离群值的影响,而稳健均值-方差模型对离群值有较好的抵御能力,可获得较优的投资组合前沿和投资权重。 The traditional mean-variance model is easily affected by outliers, which leads to the deviation between the calculated results and the actual situation. In view of this reality, the paper combines the idea of robust statistics with the traditional mean-variance model to construct a robust mean-variance model, so as to achieve the aim of reducing or eliminating the influence of outliers on the calculation results of the model. The paper also makes simulation and empirical analysis. The results show that when there is no outlier in the data, the results of investment decision using traditional and robust mean-variance models are basically consistent, and that when there are outliers in the data, the traditional mean-variance model is easily affected by outliers,but the robust mean-variance model has better resistance to outliers and can obtain better portfolio frontier and investment weight.
作者 李雄英 王斌会 Li Xiongying;Wang Binhui(Research Institute of Innovation Competitiveness of Guangdong-Hong Kong-Macao Greater Bay Area,Guangdong University of Finance and Economics,Guangzhou 510320,China;School of Management,Jinan University,Guangzhou 510632,China)
出处 《统计与决策》 CSSCI 北大核心 2020年第13期47-52,共6页 Statistics & Decision
基金 全国统计科学基金资助项目(2018LY04) 广东省教育厅青年创新人才类项目(2016WQNCX046) 广州市哲学社会学科发展“十三五”规划一般项目(2019GZYB48)。
关键词 均值-方差模型 投资组合 稳健统计 离群值 mean-variance model portfolio robust statistic outliers
  • 相关文献

参考文献4

二级参考文献27

  • 1张忠桢,唐小我.线性规划的一种以枢轴运算为基础的新算法[J].电子科技大学学报,1996,25(3):316-320. 被引量:7
  • 2张忠桢.具有上界的马科维兹资产组合选择模型的一种简便算法[J].中国学术期刊文摘(科技快报),2001,7(9):1198-1200.
  • 3张忠桢.马科维兹资产组合选择模型的一种快速算法[J].中国学术期刊文摘(科技快报),2001,7(5):656-659.
  • 4Hotelling,H.Relations Between Two Sets of Variates[J].Biometrika,1936,(28):321-377.
  • 5Robinson,P.M.,Generalized Canonical Analysis for Time Series[J].J.Multivar.Anal.,1973,(3):141-160.
  • 6Lzenman,A.J.,Reduced-rand Regression for the Multivariate Linear Model[J].J.Multivar.Anal.,1975,(5):248-264.
  • 7David,R.,Brillinger.Time Series:data Analysis and Theory[M].New York:Rinehart Winston,1975.
  • 8Anderson,T.W.,Asymptotic Theory for Canonical Correlation Analysis[J].J.Multivar.Anal.,1999,(70):1-29.
  • 9Taskinen,S.,Croux,C.,Kankainen,A.,Ollila,E.,Oja,H..Canonical Analysis Based on Scatter Matrices[J].J.Multivar.Anal.,2006,(97):359-384.
  • 10Karnel,G..Robust Canonical Correlation and Correspondance Analysis.The Frontiers of Statistical Scientific and Industrial applications,Volume Ⅱ of the Proceedings of ICOSCO I[Z],The first international conference on statistical computing,335-354.

共引文献13

同被引文献23

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部