期刊文献+

基于LRF方法的在线短租房源价格特征选择研究 被引量:1

Research on the Listings Price of Home-sharing Accommodation Based on Lasso and Random Forest
下载PDF
导出
摘要 为解决单一特征选择方法的局限性问题,提出Lasso-RF(LRF)混合特征选择方法,并应用于在线短租房源价格问题研究。基于Airbnb房源数据,实验首先通过Lasso回归进行特征选择,处理特征之间的多重共线性;然后采用随机森林算法精选剩余特征,最终得到35个重要特征,并带入4个预测模型中进行比较。结果表明,特征之间的多重共线性会影响随机森林算法对特征重要度的度量;LRF-RF预测模型与RF-RF预测模型相比,评价指标R2和MSE分别提高了0.005、0.006,同时运行时间缩短0.267秒,表明LRF混合特征选择方法优于单一的RF特征选择方法。 To solve the problem of the limitation of single feature selection method,a mixed feature selection method for Lasso-RF(LRF)is proposed,and is applied to the listings price of home-sharing accommodation.Based on the data of Airbnb,the experiment does the feature selection by Lasso regression firstly,dealing with the multicollinearity between features.Then the experiment selects the residual features by Random forest.Finally,35 important features are selected out and used in four prediction models in order to evaluate and compare the results.The results show that the multicollinearity between the features will affect the measurement of the im⁃portance of the random forest to the features.Comparison between LRF-RF prediction model and RF-RF prediction model shows that evaluation indexes R2 and MSE was increased by 0.005 and 0.006 respectively,and the running time was reduced by 0.267 seconds.The evaluation result show that LRF hybrid feature selection method is better than single RF feature selection method.
作者 张浩 朱晨龙 ZHANG Hao;ZHU Chen-long(College of Economics and Management,Jiangsu University of Science and Technology,Zhenjiang 212000,China)
出处 《软件导刊》 2020年第8期1-5,共5页 Software Guide
基金 国家自然科学基金重点项目(71331003)。
关键词 特征选择 Lasso 随机森林 在线短租 房源价格 feature selection Lasso random forest home-sharing accommodation listings price
  • 相关文献

参考文献10

二级参考文献82

  • 1张维迎,柯荣住.信任及其解释:来自中国的跨省调查分析[J].经济研究,2002,37(10):59-70. 被引量:969
  • 2刘微,罗林开,王华珍.基于随机森林的基金重仓股预测[J].福州大学学报(自然科学版),2008,36(S1):134-139. 被引量:8
  • 3方匡南,吴见彬,朱建平,谢邦昌.信贷信息不对称下的信用卡信用风险研究[J].经济研究,2010,45(S1):97-107. 被引量:64
  • 4林成德,彭国兰.随机森林在企业信用评估指标体系确定中的应用[J].厦门大学学报(自然科学版),2007,46(2):199-203. 被引量:37
  • 51.Valiant L G.A Theory of Learnable.Communication of ACM,1984; 27:1134-1142
  • 62.Kearns M,Valiant L G.Learning Boolean Formulae or Factoring.Te- chnical Report TR-1488,Cambridge,MA:Havard University Aiken Computation Laboratory,1988
  • 73.Kearns M,Valiant L G.Crytographic Limitation on Learning Boolean Formulae and Finite Automata.In:Proceedings of the 21st Annual ACM Symposium on Theory of ComputingNew YorkNY:ACM press, 1989:433-444
  • 84.Schapire R E.The Strength of Weak Learnability.Machine Learning, 1990;5:197-227
  • 95.Freund Y.Boosting a Weak Algorithm by Majority.Information and Computation,1995;121(2):256-285
  • 106.Freund Y,Schapire R E.A Decision-Theoretic Generalization of On- Line Learning and an Application to Boosting.Journal of Computer and System Sciences,1997;55(1):119-139

共引文献959

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部