期刊文献+

Bifurcation and multiplicity of positive solutions for nonhomogeneous fractional Schrödinger equations with critical growth

原文传递
导出
摘要 In this paper we study the nonhomogeneous semilinear fractional Schr?dinger equation with critical growth{(−∆)su + u = u^2∗s−1 + λ(f(x, u) + h(x)), x ∈ R^N ,u ∈ Hs(R^N ), u(x) > 0, x ∈ RN ,where s∈(0,1),N>4 s,andλ>0 is a parameter,2s*=2 N/N-2 s is the fractional critical Sobolev exponent,f and h are some given functions.We show that there exists 0<λ*<+∞such that the problem has exactly two positive solutions ifλ∈(0,λ*),no positive solutions forλ>λ*,a unique solution(λ*,uλ*)ifλ=λ*,which shows that(λ*,uλ*)is a turning point in Hs(RN)for the problem.Our proofs are based on the variational methods and the principle of concentration-compactness.
出处 《Science China Mathematics》 SCIE CSCD 2020年第8期1571-1612,共42页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11771468 and 11971027) supported by National Natural Science Foundation of China(Grant Nos.11771234 and 11926323)。
  • 相关文献

参考文献1

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部