期刊文献+

基于加权K均值聚类的多属性初至拾取方法 被引量:5

First arrival picking method by seismic multi-attribute based on weighted K-means clustering algorithm
下载PDF
导出
摘要 为提高初至拾取方法的准确性和自适应能力,将变异系数加权K均值聚类算法引入初至拾取中。首先提取均方根振幅、相邻道相关性、线积分、振幅谱主频等多种地震属性;然后针对地震属性进行加权K均值聚类,自动识别初至所在时窗;最后结合相位校正法,实现时窗内初至波起跳时间的拾取。在此基础上通过实际数据测试,并与长短时窗能量比法、反向传播神经网络方法对比,验证了本文方法的有效性与可行性。结果表明,基于加权K均值聚类的多属性初至拾取方法能较快速、准确地拾取低信噪比数据的初至,并且无需人为判断时窗,从而提高了拾取的自适应能力。 For the purpose of improving the accuracy and automation of first arrival picking method,the weighted K-means clustering algorithm is introduced.Firstly,various seismic attributes such as root-mean-squares amplitude,adjacent trace correlation,line integral and dominant frequency of amplitude spectrum are extracted.Then,weighted K-means clustering is performed for seismic attributes to identify the first arrival time window automatically.Finally,combined with phase correction method,this method is applied to realize the pickup of the first arrival time in the time window.The validity and feasibility of the proposed method,which is compared with STA/LTA and BP neural network,are verified by theoretical and practical data tests.The results suggest that the multi-attribute first arrival picking method based on weighted K-means clustering can pick up the first arrival of seismic data with low signal-tonoise ratios quickly and accurately,and enhance the automation of arrival time picking without the artificial identification of time window.
作者 周竹生 曾维祖 刘思琴 陈文样 Zhou Zhusheng;Zeng Weizu;Liu Siqin;Chen Wenyang(School of Geosciences and Info-Physics,Central South University,Changsha 410012,China;Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education,Changsha 410083,China)
出处 《地震学报》 CSCD 北大核心 2020年第2期177-186,I0001,共11页 Acta Seismologica Sinica
关键词 地震属性 加权K均值聚类 初至拾取 初至波 seismic attribute weighted-K-means clustering first-arrival picking first arrival wave
  • 相关文献

参考文献8

二级参考文献52

共引文献95

同被引文献79

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部