摘要
哥德巴赫猜想只在一定有限值范围内才能成立,过去对哥德巴赫猜想的许多论证工作都没有注意到这一点,此次研究便基于此提出了新的论证方法。要先把无穷域的论证排除在外,使论证工作从无界域转变为有界域,并把数的分割转变为数的合成。然后把这些素数都按每两个为一组进行相加,得到一系列偶数。需将所得的全部偶数按其大小排列在数轴上,如果它们能排满这段数轴上的所有偶数位置,那么这些偶数都一一对应了两个素数之和,哥德巴赫猜想从而得到证实;若不能占满这段数轴,则说明哥德巴赫猜想是不成立的。以取有限值1000为例来进行研究,发现这些偶数占满了这段数轴上的所有偶数位置,没有空缺,哥德巴赫猜想得以证实。
Goldbach conjecture is only suitable for certain finite value range.Many arguments of Goldbach Conjecture aren’t aware of the point.But the research proposes new argument method based on this.The paper firstly excludes the infinity threshold to make argument change from unbounded to bounded threshold,and to make number segmentation translate into compound.Then the paper adds the prime number according to two in a group,to gain a series of even numbers.Finally the paper arranges the even numbers on the number axis according the size.If they can book up all the even number locations of the number axis of this part,the even numbers are all in one-to-one correspondence with the addition of two prime numbers.In this way,Goldbach conjecture is confirmed.If they can’t book up the number axis of this part,this means Goldbach conjecture isn’t confirmed.Through taking the finite value 1000 as an example,the paper finds that the even numbers can fill all the even numbers location of this part,with no vacancy,so Goldbach conjecture is certified.
作者
程洁
Cheng Jie(China Architecture Design & Research Group, Beijing 100044, China)
出处
《黑龙江科学》
2020年第16期20-22,共3页
Heilongjiang Science
关键词
哥德巴赫猜想
论证
Goldbach conjecture
Argument