期刊文献+

气浮悬吊式太阳翼重力补偿装置的设计与验证 被引量:6

Design and Verification of Air-floating Suspension Gravity Compensation Device for Solar Wing
原文传递
导出
摘要 针对滚轮滑车悬吊式重力补偿装置运行阻力大、气浮支撑式补偿装置无法满足机构向气浮平台方向运动的问题,提出了基于龙门架式支撑结构与横、纵双向气浮导轨相结合的悬吊式重力补偿装置设计方案。采用多段拼接技术解决了超长纵向导轨生产与装调难题;采用在纵向导轨拼缝两侧增设节流孔的方法,提升了纵向滑车在拼缝处的运行平稳性;在纵向导轨上采用倒"V"形工作表面,解决了因外力未通过质心可能引起横向导轨运行偏转的问题;采用挤压成型中空铝型材与碳纤维增强梁相结合的方法实现了大跨距横向导轨的减重与抗弯刚度的提升。经分析与试验验证,在单个悬吊点处悬挂90kg负载,该装置最大运行阻力系数不超过0.037%,运行范围可达2 m×20 m,在速度不超过1 m/s,加速度不超过0.3 m/s^2的使用条件下,具有良好的动态跟随能力,可满足太阳翼、天线等大型空间可展开机构地面展开试验与性能测试的需求。 Aiming at the problem that the running resistance of the wheeled trolley suspension gravity compensation device is large and the air-floating support compensation device cannot meet the requirement of the mechanism deploy against the air-floating platform, a suspension gravity compensation device composed of the gantry-type support structure and the transverse and longitudinal two-way air-floating guides is proposed. The multi-segment splicing technology is used to solve the problem of production and adjustment of super long longitudinal guide rails;the method of adding throttle holes on both sides of the longitudinal guide joints is adopted to improve the running stability of the longitudinal air-floating trolley at the joints;The inverted "V" shaped working surface solves the problem of transverse rail running deflection caused by the external force not passing through the centroid;the combination of the extruded hollow aluminum profile and the carbon fiber reinforced beam realizes the weight reduction and bending stiffness increase of the large span transverse guide rail. After analysis and test verification, in case of hanging a 90 kg load at a single suspension point, the maximum running resistance coefficient of the device is not more than 0.037%, the operating range is up to 2 m×20 m. In case of a follow speed not more than 1 m/s and the acceleration is less than 0.3 m/s^2, the device has good dynamic following ability, which can meet the requirements of ground deployment test and performance test of large space deployable mechanisms such as solar arrays and antennas.
作者 吴跃民 罗强 王晛 刘颖 孙建辉 WU Yuemin;LUO Qiang;WANG Xian;LIU Ying;SUN Jianhui(Institute of Spacecraft System Engineering,China Academy of Space Technology,Beijing 100094;Institute of Mechanical Engineering,Zhejiang University of Technology,Hangzhou 310032)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2020年第13期149-155,共7页 Journal of Mechanical Engineering
基金 国家重大科技专项资助项目。
关键词 气浮滑车 重力补偿 悬吊系统 可展开机构 地面展开试验 air-floating trolley gravity compensation suspension system deployable mechanism ground deployment test
  • 相关文献

参考文献8

二级参考文献68

  • 1侯予,赵祥雄,陈双涛,陈纯正.小孔节流静压止推气体轴承静特性的数值分析[J].润滑与密封,2008,33(9):1-3. 被引量:27
  • 2居鹤华,崔平远,崔祜涛.具有滑移的摇臂式月球车建模与控制[J].机械工程学报,2005,41(9):134-139. 被引量:8
  • 3胡敏,程飞月.几种评定直线度误差的方法[J].现代测量与实验室管理,2006,14(5):26-27. 被引量:6
  • 4魏康民.高精度V形导轨加工工艺的改进[J].组合机床与自动化加工技术,2007(2):82-84. 被引量:4
  • 5Jhy-Chyang Renn,Chih-Hung Hsiao.Experimental and CFD Study on the Mass Flow-rate Characterixtic of Gas through OrificeType Restrictor in Aerostatic Beatings[J].Tribology International,2004,37:309-315.
  • 6Ekinci T O,Mayer J R R,Cloutier G M.Investigation of Accuracy of Aerostatic Guideways[J].International Journal of Machine Tools & Manufacture,2009,Ⅰ:Ⅲ-Ⅳ.
  • 7Kassab S Z,Noureldeen E M,Shawky M A.Effects of Operating Conditions and Supply Hole Diameter on the Performance of a Rectangular Aerostatic Bearing[J].Tribology International,1997,30(7):533-545.
  • 8周柏平.气垫技术:将悬浮进行到底[N].中国国防报,2009-08-18.
  • 9Khatait J P,LIN W,LIN W J.Design and Development of Orifice-type Aerostatic Thrust Bearing[J].SIM Tech Technical Teports,2005,6(1).
  • 10王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.126-131,147-148.

共引文献56

同被引文献60

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部