期刊文献+

微扰QCD因子化方案下的B介子三体衰变

B three-body decays in perturbative QCD factorization approach
下载PDF
导出
摘要 运用微扰QCD因子化方案,考虑Sudakov因子对长程部分的压低作用,引入双强子分布振幅等非微扰参数,利用Flatte和Briet-Wigner模型对类时形状因子进行参数化处理,加入顶角修正,微扰计算经共振态f0(500,980,1500,1790)的B^+→π^+π^-π^+三体衰变分支比,结果分别为6.41×10^-9,1.25×10^-7,1.92×10^-8,5.66×10^-9.目前实验上给出分支比Br(B^+→π^+f0(980)[π^+π^-])的上限数据是1.5×10^-6.对比实验结果表明,在考虑ss的贡献和顶角修正项后,该文计算较前期结果更加合理,其中ss的贡献是差别的主要来源,不容忽略. We calculate the branching ratio of B three-body decay to f0(500,980,1500,1790)resonance in perturbative QCD factorization approach with the two-hadron distribution amplitude input parameter.The Flatte and the Breit-Wigner models are adopted to parameterize the time-like scalar form factors.The Sudakov form factors suppress the soft dynamics effectively,and make the perturbative calculation possible.We get the results 6.41×10^-9,1.25×10^-7,1.92×10^-8,5.66×10^-9 respectively.For the decay Br(B^+→π^+f0(980)[π^+π^-]),the pQCD prediction agrees very well with currently available experimental upper limits,1.5×10^-6.Compared with the experimental data,we can see that the calculation including vertex corrections and ss component contribution are more accurate and reliable than the results before,and the main changes come from the ss component contribution.
作者 王辉升 王兴林 葛强 王庆松 WANG Hui-sheng;WANG Xing-lin;GE Qiang;WANG Qing-song(School of Mathematics and Physics,Anhui Polytechnic University,Wuhu 241000,China)
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第4期679-684,共6页 Journal of Yunnan University(Natural Sciences Edition)
基金 安徽省高校自然科研基金(TSKJ2015B27).
关键词 B介子 因子化方案 三体衰变 共振态 B meson factorization approach three-body decay resonance
  • 相关文献

参考文献3

二级参考文献29

  • 1张一方.从量子力学-相对论到物理学的基本原理和Noether定理的推广[J].云南大学学报(自然科学版),2007,29(4):375-381. 被引量:17
  • 2[1]Wirbel M, Stech B, Bauer M. Z. Phys., 1985, C29: 637; Bauer M, Stech B, Wirbel M. Z. Phys.,1987, C34: 103; CHAU L L, CHENG H Y, Sze W K et al. Phys. Rev., 1991, D43: 2176; Erratum, 1998, D58: 019902
  • 3[2]Ali A, Kramer G, Lü C D. Phys. Rev., 1998, D58: 094009; Lü C D. Nucl. Phys. Proc., 1999, 74 (Suppl.): 227-230
  • 4[3]CHEN Y H, CHENG H Y, Tseng B et al. Phys. Rev., 1999, D60: 094014; CHENG H Y, YANG K C. hep-ph/9910291
  • 5[4]Beneke M, Buchalla G, Neubert M et al. Phys. Rev. Lett., 1999, 83: 1914; Nucl. Phys., 2000, B591: 313; DU Dong-Sheng. HEP&NP, 2002, 26(Suppl.):11
  • 6[5]Lepage G P, Brodsky S. Phys. Rev., 1980, D22: 2157
  • 7[6]Bander M, Silverman D, Soni A. Phys. Rev. Lett., 1979, 43: 242
  • 8[7]Ali A, Kramer G, Lü C D. Phys. Rev., 1999, D59: 014005; Lü C D. Proceedings of the Third International Conference on B Physics and CP Violation, Edited by CHENG H Y, HOU W S. World Scientific,1999, 245
  • 9[8]Botts J, Sterman G. Nucl. Phys., 1989, B225: 62
  • 10[9]CHANG C H, LI H N. Phys. Rev., 1997, D55: 5577; Yeh T W, LI H N. Phys. Rev., 1997, D56: 1615

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部