期刊文献+

单项代数的诱导代数

Algebras Induced from Monomial Algebras
原文传递
导出
摘要 本文在单项代数中基于维数树的概念引入了整体和有限整体维数树以及维数代数的概念,应用这些概念进而给出了计算单项代数同调维的更有效的组合算法. This paper aims to introduce to a monomial algebra some new notions-global and finite global dimension trees and the dimension algebra,based upon dimension trees,leading to more efficient algorithms to compute the homological dimensions of monomial algebras.
作者 时洪波 SHI Hongbo(Department of Mathematics,Nanjing University of Finance and Economics,Nanjing,Jiangsu,210046,P.R.China)
出处 《数学进展》 CSCD 北大核心 2020年第4期418-428,共11页 Advances in Mathematics(China)
基金 Nanjing University of Finance and Economics(Nos.SHBXL10001,300301022)。
关键词 极小投射分解 投射维 Topdown 维数树 整体维数树 minimal projective resolution projective dimension Topdown dimension tree global dimension tree
  • 相关文献

参考文献1

二级参考文献10

  • 1Shi, H. B.: Finitistic dimension of monomial algebras. J. Algebra, 264, 397-407 (2003).
  • 2Shi, H. B.: Constructing minimal projective resolutions. Comm. Algebra, 35, 1874-1881 (2007).
  • 3Zimmermann-Huisgen, B.: Predicting syzygies over monomial relations algebras. Manuscripta Math., 70, 157-182 (1991).
  • 4Shi, H. B.: Finitistic Dimension of Monomial Algebras, Doctoral Thesis, University of Toledo, Ohio, 2002.
  • 5Shi, H. B.: Computation of the finitistic dimension of monomial algebras. J. Symbolic Comput, 37, 537-546 (2004).
  • 6Shi, H. B.: Finitistic dimension of dual extension of monomial algebras. Comm. Algebra, 34, 2069-2077 (2006).
  • 7Fenstel, C. D., Green, E. L., Kirkman, E., et al.: Constructing projective resolutions. Comm. Algebra, 21, 1869-1887 (1993).
  • 8Farkas, D. R, Feustel, C. D., Green, E. L.: Synergy in the theories of Gr6bner bases and path algebras. Canad. J. Math., 21, 1869-1887 (1993).
  • 9Xi, C. C.: On the finitistic dimension conjecture I: related to representation-finite algebras. J. Pure Appl. Algebra, 193, 287-305 (2004).
  • 10Xi, C. C.: On the finitistic dimension conjecture II: related to finite global dimension. Adv. Math., 201, 116-142 (2006).

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部