期刊文献+

Some Existence Theorems on Path Factors with Given Properties in Graphs 被引量:3

原文传递
导出
摘要 A path factor of G is a spanning subgraph of G such that its each component is a path.A path factor is called a P≥n-factor if its each component admits at least n vertices.A graph G is called P≥n-factor covered if G admits a P≥n-factor containing e for any e∈E(G),which is defined by[Discrete Mathematics,309,2067-2076(2009)].We first define the concept of a(P≥n,k)-factor-critical covered graph,namely,a graph G is called(P≥n,k)-factor-critical covered if G-D is P≥n-factor covered for any D⊆V(G)with|D|=k.In this paper,we verify that(i)a graph G withκ(G)≥k+1 is(P≥2,k)-factor-critical covered if bind(G)>2+k/3;(ii)a graph G with|V(G)|≥k+3 andκ(G)≥k+1 is(P≥3,k)-factor-critical covered if bind(G)≥4+k/3.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2020年第8期917-928,共12页 数学学报(英文版)
基金 Supported by Six Big Talent Peak of Jiangsu Province(Grant No.JY–022) 333 Project of Jiangsu Province the National Natural Science Foundation of China(Grant No.11371009)。
  • 相关文献

同被引文献5

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部