摘要
针对高分影像建筑物提取存在错分和漏分等问题,常见的单幅影像矩形轮廓优化由于投影差、树木和阴影遮挡等问题边缘准确度不够,本文提出了一种融合多时相建筑物轮廓优化方法。首先,将两期高分影像进行匹配等预处理,利用基于偏移阴影分类验证提取建筑物初始结果。然后,分别获得两期影像中各建筑物轮廓的最小面积外接矩形,并对同名建筑物的最小面积外接矩形的各对应角点进行匹配。最后,通过对比两期影像的对应最小面积外接矩形的对应边上建筑物像素点的数量,选择像素点数量多的边作为适宜边进行平移以获得最优边,四条边都是最优边后进行直线正交得到最终符合建筑物原始形态的轮廓。试验结果表明,本文方法相比传统方法和其他轮廓优化方法在精确度和完整度上均有提高。
In view of the problems of misclassification and omission in building extraction from high-resolution images,the common rectangular contour optimization of single image is not accurate enough due to poor projection,trees and shadow shading,Therefore,an optimization method of multi-temporal building contour is proposed.Firstly,the two high-resolution images are preprocessed by matching,and the initial results of buildings are extracted by shadow classification verification.Then,the minimum area circumscribed rectangles of each building contour in the two images are obtained,and the corresponding corners of the minimum area circumscribed rectangles of the same building are matched.Finally,by comparing the number of building pixels on the corresponding edge of the corresponding minimum area circumscribed rectangle of the two phases of image,the edge with more pixels is selected as the appropriate edge for translation to obtain the optimal edge.After the four edges are the optimal edges,the final contour that conforms to the original shape of the building is obtained by orthogonal lines.Experimental results show that the proposed method improves the accuracy and completeness compared with the traditional results and other contour optimization methods.
作者
常京新
高贤君
杨元维
王双喜
CHANG Jingxin;GAO Xianjun;YANG Yuanwei;WANG Shuangxi(School of Geosciences,Yangtze University,Wuhan 430100,China)
出处
《测绘通报》
CSCD
北大核心
2020年第7期112-115,共4页
Bulletin of Surveying and Mapping
基金
武汉大学测绘遥感信息工程国家重点实验室开放基金(18R04)
地理国情监测国家测绘地理信息局重点实验室开放基金(2017NGCM07)
湖北省教育厅科学研究计划(Q20181317)。
关键词
高分辨率遥感影像
建筑物轮廓优化
最小面积外接矩形
直线正交
最优边选择
high-resolution remote sensing image
building contour optimization
minimum area enclosing rectangle
straight line orthogonal
optimal edge selection