期刊文献+

基于面向对象的极化雷达影像分类 被引量:5

PolSAR image classification based on object-oriented technology
下载PDF
导出
摘要 有效的PolSAR影像分类技术是PolSAR成功应用的基础,然而相比于比较成熟的PolSAR成像技术与系统设计,PolSAR影像分类技术的发展相对滞后,针对PolSAR影像面向对象分类研究中存在的问题,提出了一种新的结合多种目标极化分解、ReliefF-PSO_SVM和集成学习的PolSAR影像面向对象分类方法。该方法首先采用多种方法对PolSAR影像进行目标极化分解;然后将利用不同极化分解方法提取的极化参数组合成一幅多通道影像;接下来对多通道影像进行分割、特征提取;采用ReliefF-PSO_SVM算法进行特征选择,并保留适应度最高的N个特征子集进行分类,每一个特征子集对应一个分类结果;最后利用集成学习技术对各分类结果进行集成。以吉林省长春市部分区域为研究区,Radarsat2影像为数据源,将提出的方法应用于土地利用分类中,取得了较好的分类效果,总体精度和Kappa系数分别达到了85.06%和0.8006。此外,还构建了3种对比方法用于分类,对比结果进一步证明了所提方法在PolSAR影像分类中的优越性。 An effective polarimetric synthetic aperture radar(PolSAR)image classification technology is the basis of the successful application of PolSAR.However,compared with relatively mature Pol‐SAR imaging technology and system design,PolSAR image classification technology lags behind.Aiming at the main problems existing in the research of object-oriented classification of PolSAR images,this paper proposed a new object-oriented classification method,which combines multi-target polarimetric decomposition,ReliefF-PSO_SVM and ensemble learning.First,polarimetric decomposition is implemented for PolSAR image using various methods.Polarimetric parameters extracted using different polarimetric decomposition methods are combined into a multichannel image.Second,the multichannel image is divided into numerous image objects by implementing multi-resolution segmentation.Third,features are extracted from the multichannel image.Fourth,ReliefF-PSO_SVM algorithm is applied for feature selection,and N feature subsets with the highest fitness are retained for classification.Each feature subset corresponds to a classification result.Finally,ensemble learning technology is used to integrate the classification results.The study site is located at the southeastern part of Changchun City,Jilin Province.A RADARSAT-2 Fine Quad-Pol image was selected as the data source for this study.The proposed method was applied to land-use classification,and good classification results were obtained.The overall accuracy was 85.06%and the kappa value was 0.8006.In addition,three other classification methods were performed for comparison.The comparison results further proved the superiority of the proposed method in PolSAR image classification.
作者 肖艳 王斌 XIAO Yan;WANG Bin(College of Exploration and Surveying Engineering,Changchun Institute of Technology,Changchun 130012,China;Changchun Institute of Surveying and Mapping,Changchun 130021,China)
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2020年第4期505-512,共8页 Journal of Infrared and Millimeter Waves
基金 吉林省教育厅项目(120190032) 长春工程学院种子基金项目(320180023)。
关键词 面向对象分类 极化合成孔径雷达(Polarimetric Synthetic Aperture Radar PolSAR) 极化分解 特征选择 集成学习 object-oriented classification polarimetric synthetic aperture radar(PolSAR) polarimetric decomposition feature selection ensemble learning
  • 相关文献

参考文献2

二级参考文献41

  • 1任江涛,黄焕宇,孙婧昊,印鉴.基于相关性分析及遗传算法的高维数据特征选择[J].计算机应用,2006,26(6):1403-1405. 被引量:16
  • 2Du Peijun, Liu Pei, Gamba P. Urban spatial and temporal changes analysis based on spectral, polarimetric, temporal, spatial dimensions and decision level fusion[C].1st EARSel Workshop on temporal analysis of satellite images, Mykonos, Greece, 2225 May 2012, 58-64.
  • 3Brunner D, Lemoine G, Bruzzone L, et al.Building Height Retrieval From VHR SAR Imagery Based on an Iterative Simulation and Matching Technique[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2010,48(3): 1487-1504.
  • 4Zhong Ping, Wang Runsheng. A Multiple Conditional Random Fields Ensemble Model for Urban Area Detection in Remote Sensing Optical Images[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2007,45(12): 3978-3988.
  • 5Lehmann A, Caccetta A, Zhou Z, et al. Joint Processing of Landsat and ALOS-PALSAR Data for Forest Mapping and Monitoring[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2012,50(1): 55-67.
  • 6Sportouche H, Tupin F, Denise L. Building detection by fusion of optical and SAR features in metric resolution data[C], Geoscience and Remote Sensing Symposium, Cape Town, 12-17 July 2009, IV769IV772.
  • 7Brunner D, Lemoine G, Bruzzone L. Earthquake Damage Assessment of Buildings Using VHR Optical and SAR Imagery[J]. Geoscience and Remote Sensing. IEEE Transactions, 2010,48(5): 2403-2420.
  • 8Gamba P, DellAcqua F, Dasarathy V. Urban remote sensing using multiple data sets: Past, present, and future[J]. Information Fusion, 2005,6(4): 319-326.
  • 9Dong Jiang, Zhuang Dafang, Huang Yaohuan et al. Advances in Multi-Sensor Data Fusion: Algorithms and Applications[J]. Sensors, 2009,9(10): 7771-7784.
  • 10Zhang Hongsheng, Zhang Yuanzhi, Lin Hui. Urban land cover mapping using random forest combined with optical and SAR data[C]. Geoscience and Remote Sensing Symposium (IGARSS), Munich, 2227 July 2012, 6809-6812.

共引文献65

同被引文献52

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部