期刊文献+

基于关联分析的乘客公共交通依赖度识别方法 被引量:3

Identification Method of Passenger's Dependence Level of Public Transportation Based on Correlation Analysis
下载PDF
导出
摘要 不同乘客在出行过程中对公共交通的依赖程度具有显著差异,精准识别乘客公共交通依赖度,有助于针对性地引导出行者向公共交通方式转移.本文基于多源数据的关联,获取包含个体属性的公共交通出行链,从出行行为和个体属性两方面提出8个依赖度指标,构建二阶聚类模型,识别乘客公共交通依赖度.结果表明:样本按依赖度高低被划分为4类群组;部分高、较高依赖度乘客在出行决策时受限于收入和车辆拥有量,并有向私家车出行转移的趋势;乘客出行习惯行为较个体属性对公共交通依赖度的影响更大.利用平均命中率(AHR)和平均覆盖率(ACR)指标评估个体属性对识别结果的影响,得出结论,个体属性指标间存在耦合关系,且指标缺失量与模型误差具有非线性关系.研究有助于理解公共交通乘客的需求和选择倾向性,为精准改善公共交通服务提供支撑. There are significant variations in the dependence degree on public transportation(PT)for passengers in their long-term travel behavior.Accurate identification of the PT dependence level of passengers is conducive to promote the attractiveness of public transportation.The PT travel chain containing individual attributes is obtained from multi-source heterogeneous data,then 8 indicators are proposed to measure the travelers'PT dependence from the aspects of individual travel behaviors and attribute information.Thus,a two-step clustering model is constructed to identify the PT dependence level of passengers.The results show that the respondents are clustered into 4 groups according to the travel dependence levels of public transport.The respondents with the high PT dependence level are limited by their income and vehicle ownership,and there is a trend of transfer to private cars.In addition,travel habit behavior has a greater impact on the individual PT dependence level compared with the individual attributes of passengers.Finally,the evaluation indicators of AHR and ACR are used to further evaluate the impacts of individual attributes on recognition results.The results show that the individual attribute indicators have coupling effects on the model results,and the indicators missing quantity and model error own the nonlinear relationship.This study is conducive to better understanding the passengers'travel rules and demands,and provides support for the improvement of public transport services.
作者 胡松 翁剑成 周伟 林鹏飞 孔宁 HU Song;WENG Jian-cheng;ZHOUWei;LIN Peng-fei;KONG Ning(Beijing Key Laboratory of Traffic Engineering,Beijing University of Technology,Beijing 100124,China;Ministry of Transport of People's Republic of China,Beijing 100736,China)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2020年第4期136-142,共7页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金重大项目(U1811463) 国家自然科学基金(51578028) 北京市“科技新星”计划(Z171100001117100).
关键词 城市交通 依赖度识别 二阶聚类模型 公交出行行为 数据关联 urban traffic identification of travel dependence two-step clustering model travel behavior of public transport data correlation
  • 相关文献

参考文献3

二级参考文献64

  • 1周素红,闫小培.基于居民通勤行为分析的城市空间解读——以广州市典型街区为案例[J].地理学报,2006,61(2):179-189. 被引量:82
  • 2北京交通发展研究中心.2011北京市交通发展年度报告.2011.
  • 3Aangeenbrug R T. Automobile commuting: A geographic analysis of private car use in the daily journey to work in large cities [D]. University of Wisconsin, 1965.
  • 4Quarmby D A. Choice of travel mode for the journey to work: Some findings. Journal of Transport Economics and Policy, 1967: 273-314.
  • 5Stead D, Marshall S. The relationships between urban form and travel patterns. An international review and evaluation. European Journal of Transport and Infrastructure Research, 2001, 1(2): 113-141.
  • 6Gardner B, Abraham C. What drives car use? A grounded theory analysis of commuters' reasons for driving. Transportation Research Part F: Traffic Psychology and Behaviour, 2007, 10(3): 187-200.
  • 7Steg L, Geurs, K, Ras M. The effects of motivational factors on car use: A multidisciplinary modelling approach. Transportation Research Part A: Policy and Practice, 2001, 35(9): 789-806.
  • 8Gardner B, Abraham C. Psychological correlates of car use: A meta-analysis. Transportation Research Part F: Traffic Psychology and Behaviour, 2008, 11 (4): 300-311.
  • 9Dasgupta M, Frost M, Spence N. Interaction between urban form and mode choice for the work journey: Manchester/ Sheffield 1971-1981. Regional Studies, 1985, 19(4): 315-328.
  • 10Kockelman K M. Travel behavior as a function of accessibility, land use mixing, and land use balance: Evidence from the San Francisco Bay Area [D]. City and Regional Planning, University of California, Berkeley, 1996.

共引文献36

同被引文献15

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部