期刊文献+

基于苯乙烯过程生产数据驱动的软测量模型研究 被引量:1

Soft Sensor Model Based on the Real-Time Data of the Styrene Process
下载PDF
导出
摘要 针对苯乙烯生产过程的特点,引入软测量技术在线预测苯乙烯生产过程的一些关键参数,介绍了人工智能BP神经网络和部分最小二乘方法的软测量建模方法,基于企业生产数据研究了乙苯脱氢转化率、第一脱氢反应器脱氢转化率、第二脱氢反应器脱氢转化率和苯乙烯选择性等关键变量的软测量方法,对比了BP神经网络和部分最小二乘方法建模优缺点,应用结果表明,基于BP神经网络所建立的关键参数的软测量模型可真实再现实际苯乙烯生产过程,为安全可靠监控苯乙烯生产过程及未来实施先进及优化控制技术奠定了基础。 Aiming at the features of styrene,soft sensor based on the real-time data was applied to predict some key process variables.Two methods,BP neural network and partial least squares,were used to model the unmeasured process variables.At the same time,real-time process data were used to train the model in order to make sure the constructed model endure a good fault-tolerance.The experiments for total conversion,first reactor conversion,second rector conversion of ethylbenzene and selectivity of styrene were given based on BP neural networks and PLS,which showed the proposed methods could predict the dynamic performance of some key variables.It is very useful to monitor the important variables for the advanced control and optimization of styrene production.
作者 张彬 刘文杰 ZHANG Bin;LIU Wenjie(Shanghai Research Institute of Petrochemical Technology,SINOPEC,Shanghai 201208,China)
出处 《化学反应工程与工艺》 CAS 北大核心 2019年第5期461-468,共8页 Chemical Reaction Engineering and Technology
关键词 苯乙烯 神经网络 软测量模型 部分最小二乘 styrene neural network soft sensor model partial least squares
  • 相关文献

参考文献9

二级参考文献52

共引文献33

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部