期刊文献+

推进器功率推力关系对动力定位能力的影响 被引量:1

Influence of the power-thrust relation of the thrusters on dynamic position capability
下载PDF
导出
摘要 动力定位推力分配一般以能量损耗最小为目标进行优化求解。本文旨在讨论推进器功率推力关系对动力定位能力的影响。针对三个不同的推进器功率推力关系,建立性能指标数学模型。基于不同指标函数形式,采用遗传算法、模拟退火算法以及二次规划方法进行优化求解。算例分析结果表明,不同的推进器功率推力关系形式对动力定位能力的影响甚微。同时,遗传算法、模拟退火算法收敛速度慢,计算效率远低于二次规划算法。因此,在处理推力分配优化实际问题时可认为推进器功率正比于推力的平方,推荐采用二次规划算法求解。此外,计算结果还表明动力定位系统在功率受限制时会降低系统的定位能力。 Thrust allocation is a core issue of dynamic positioning and is generally optimized by minimization of energy consumption. The purpose of this paper is to investigate the influence of power-thrust relation on dynamic positioning capability. In view of different power-thrust relations of the thrusters, cost functions are set up. According to these functions, genetic algorithm(GA), simulated annealing algorithm(SAA) and quadratic programming(QP) method can be utilized to optimize the thrust allocation. An illustrative example is provided to demonstrate correctness of the capability polar plot program. And the results show that different power-thrust relations of the thrusters have little influence on DP capability. Meanwhile, the convergence speed of GA and SAA is slow, and the computation efficiency is much lower than that of QP method. Therefore, when thrust allocation is optimized in engineering projects, thruster power can be treated as proportional to the square of thrust, and QP method is recommended to improve the computation efficiency. Furthermore,the results also show that the power limitation will lower the positioning capability of DP system.
作者 刘正锋 张隆辉 魏纳新 孙强 LIU Zheng-feng;ZHANG Long-hui;WEI Na-xin;SUN Qiang(China Ship Scientific Research Center,Wuxi 214082,China)
出处 《船舶力学》 EI CSCD 北大核心 2020年第8期1014-1023,共10页 Journal of Ship Mechanics
基金 国家科技支撑计划课题(2014BAB13B01) 工信部深水半潜式支持平台研发专项(工信部联装函[2016]546号) 工信部深海采矿船船型开发研发专项(工信部联装函[2016]548号)。
关键词 动力定位 功率限制 推力分配 定位能力 dynamic position power limitation thrust allocation DP capability
  • 相关文献

参考文献5

二级参考文献42

  • 1Johansen T A, Fossen T I, Berge S P. Constrained nonlinear control allocation with singularity avoidance using Sequential Quadratic Programming[J]. 1EEE Trans. on Cont. Syst. Technology, TCST-200d, 12(1): 211-216.
  • 2Liang C C, Cheng W H. The optimal control of thruster system for dynamically positioned vessels[J]. Ocean Engineering, 2004, 31: 97-110.
  • 3Garus J. Optimization of thrust allocation in the propulsion system of an underwater vehicle[J]. Int. J Appl. Math. Com- pute. Sci., 2004, 14(4): 461-467.
  • 4Han S P. A Globally convergent method for nonlinear programming[J]. J Optimization Theory and Applications, 1977, 22: 297.
  • 5Fossen T I. Marine control systems: Guidance, navigation and control of ships, rigs and underwater vehicles[M]. ISBN 82- 92356-00-2, Marine Cybernetics, Trondheim, 2002.
  • 6Fossen T I. Guidance and control of ocean vehicles[M]. John Wiley & Sons Ltd., 1994.
  • 7Schittkowski K. NLQPL: A FORTRAN-Subroutine solving constrained nonlinear programming Problems[J]. Annals of Operations Research, 1985, 5: 485-500.
  • 8Biggs M C. Constrained minimization using recursive quadratic programming[M]. Towards Global Optimization, Dixon L C W, Szergo G P, eds., North-Holland, 1975: 341-349.
  • 9Powell M J D. The convergence of variable metric methods for nonlinearly constrained optimization calculations[M]. Nonlinear Programming 3, Mangasarian 0 L, Meyer R R, Robinson S M, eds., Academic Press, 1978.
  • 10Powell M J D. A fast algorithm for nonlinearly constrained optimization calculations[M]. Numerical Analysis, Watson G A ed., Lecture Notes in Mathematics, Springer Verlag, 1978, 630.

共引文献37

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部