期刊文献+

基于正交试验方法的柔性神经电极优化设计 被引量:4

Optimization Design of Flexible Neural Electrodes Based on Orthogonal Experimental Method
下载PDF
导出
摘要 对柔性神经电极进行优化设计,综合弹性模量、电极厚度、楔形角这3个参数进行研究,利用正交试验设计的思想设置试验组,采用ANSYS软件研究不同试验组的脑组织最大应变,并根据试验结果提出组合式柔性神经电极的设计思路.研究结果表明,在弹性模量为8.5 GPa、电极厚度为15μm、楔形角为45°的情况下,微动造成的脑组织最大应变最小,为5.5627×10-2.一种中间层聚合物弹性模量为5.5 GPa,两边层聚合物弹性模量为8.5 GPa的三明治结构的组合式柔性电极,在微动损伤以及植入形变上均具有一定的优势. In order to optimize the design of flexible neural electrodes,three parameters of elastic modulus,electrode thickness,and wedge angle are comprehensively studied.The experimental groups are established based on orthogonal experimental design.The maximum strain of brain tissue in different experimental groups are evaluated by ANSYS.In addition,a new hybrid flexible electrode is designed based on the stimulation results.The experimental results reveal that when elastic modulus is 8.5GPa,thickness is 15μm and wedge angle is 45°,the maximum strain of brain tissue due to micromotion is the smallest,i.e.,5.5627×10-2.Moreover,a sandwich-type hybrid flexible neural electrode is designed with an elastic modulus of 8.5GPa on both sides and an elastic modulus of 5.5GPa in the intermediate layer.The sandwich-type structure can effectively reduce micromotion damage and implant deformation compared to the traditional electrode.
作者 谢颉 张文光 尹雪乐 李伟 XIE Jie;ZHANG Wenguang;YIN Xuele;LI Wei(State Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2020年第8期785-791,共7页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(51675330)。
关键词 柔性电极 有限元 正交试验 优化设计 flexible electrode finite element orthogonal experiment optimized design
  • 相关文献

参考文献4

二级参考文献73

  • 1BIRAN R, MARTIN D C, TRESCO P A. The brain tissue response to implanted silicon microelectrode ar- rays is increased when the device is tethered to the skull [J]. Journal of Biomedical Materials Research Part A, 2007, 82A(1): 169 - 178.
  • 2QUA Xiang-hua, QIONG Wua, ZHANG Kun yang, et al. In vivo studies of poly (3-hydroxybutyrate-co 3 hydroxyhexanoate) based polymers= Biodegradation and tissue reactions[J]. Biomaterials, 2006, 27(19): 3540 - 3548.
  • 3MCCONNELL G C, REES H D, LEVEY A 1, et al. Implanted neural electrodes cause chronic, local inflam marion that is correlated with local neurodegeneration[J]. Journal of Neural Engineering, 2009, 6(5): 12.
  • 4CHEUNG K. Implantable mieroscale neural interfaces [J]. Biomedical Mierodevices, 2007, 9(6): 923-938.
  • 5EYMOUR J P, KIPKE D R. Neural probe design for duced tissue encapsulation in CNS [J]. Biomaterials,2007, 28(25) : 3594 - 3607.
  • 6MCCONNELL G C, SCHNEIDER T M, OWENS DJ, et al. Extraction force and cortical tissue reaction of sili con microelectrode arrays implanted in the rat brain [J]. Biomedical Engineering, IEEE Transactions on, 2007, 54 (6) : 1097 - 1107.
  • 7PATIL P G, TURNER D A. The development of brain machine interface neuroprosthetic devices [J]. Neuro- therapeutics, 2008, 5(1): 137- 146.
  • 8MOXON K A, HALl.MAN S, SUNDARAKRISH NAN A, et al. Long-term recordings of multiple, sin- gle-neurons for clinical applications: the emerging role of the bioactive microelectrode [J]. Materials, 2009, 2 (4) : 1762 - 1794.
  • 9AARON G, JIT M. Brain micromotion around implants in the rodent somatosensory cortex [J]. Journal of Neu- ral Engineering, 2006, 3(3) : 189.
  • 10VAHASOYRINKI M, TUUKKANEN T, SORVOJA H, et al. A minimally invasive displacement sensor for measuring brain micromotion in 3D with nanometer scale resolution[J]. Journal of Neuroscience Methods, 2009. 180(2): 290- 295.

共引文献304

同被引文献42

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部