期刊文献+

一种改进的蝴蝶优化算法 被引量:8

An Improved Butterfly Optimization Algorithm
原文传递
导出
摘要 本文针对基本的蝴蝶优化算法存在收敛速度慢、精度低和易陷入局部最优等缺陷,提出一种改进的蝴蝶优化算法.首先通过实验分析参数对算法的影响,其次融入差分进化策略和精英策略,通过10个标准测试函数进行测试,结果表明,改进算法在8个测试函数中均找到了理论最优解,其收敛速度、精度和鲁棒性均优于基本的蝙蝠算法(BA)、花朵授粉算法(FPA)、布谷鸟算法(CS)、融合差分进化算法的花朵授粉算法(DEFPA)、蝴蝶算法(BOA)和融合差分进化算法的蝴蝶算法(DEBOA),且寻优性能得到大幅度提升;同时对4个非线性方程的求解也验证了该算法的有效性. A improved butterfly optimization algorithm was presented to overcome the problems of low-accuracy computation,slow-speed convergence and being easily relapsed into local extremum.Firstly,the influence of parameters on the algorithm is analyzed by experiments.Secondly,the differential evolution strategy and elite strategy are integrated.Ten standard test functions are tested.The results show that the improved algorithm finds the oretical optimal solution in eight test functions,and its convergence speed,accuracy and robustness are better than the basic bat algorithm(BA) and the flower pollination algorithm(FPA).The cuckoo algorithm(CS),flower pollination algorithm incorporating differential evolution algorithm(DEFPA),butterfly algorithm(BOA) and butterfly algorithm incorporating differential evolution algorithm(DEBOA),The optimization performance of the improved algorithm has been greatly improved.At the same time,the experimental results of solving four nonlinear equation group verify the validity of the algorithm.
作者 谢聪 封宇 XIE Cong;FENG Yu(Guangxi University Xingjian College of Science and Liberal Arts,Nanning 530005,China;Shool of Electromechanical and Information Engineering,Guangxi Vocational Technical College,Nanning 530226,China)
出处 《数学的实践与认识》 北大核心 2020年第13期105-115,共11页 Mathematics in Practice and Theory
基金 广西高校中青年教师基础能力提升项目(2017KY0980)。
关键词 蝴蝶优化算法 函数优化 非线性方程组 algorithm function optimizaation nonlinear equatioins
  • 相关文献

参考文献8

二级参考文献75

  • 1陈发来,杨武.区间算法在吴消元法解代数方程组中的应用[J].中国科学(A辑),2005,35(8):910-921. 被引量:4
  • 2陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 3张建科,王晓智,刘三阳,张晓清.求解非线性方程及方程组的粒子群算法[J].计算机工程与应用,2006,42(7):56-58. 被引量:37
  • 4精通Matlab[M].北京:电子工业出版社,2008.
  • 5张建科,刘三阳,张晓清.改进的粒子群算法[J].计算机工程与设计,2007,28(17):4215-4216. 被引量:32
  • 6YANG X. Flower pollination algorithm for global optimization[ C]// Proceedings of the 1 l tb International Conference on Unconventional Computation and Natural Computation, LNCS 7445. Berlin: Spring- er-Verlag, 2012:240-249.
  • 7YANG X-S, KARAMANOGLU M, HE X. Multi-objective flower al- gorithm for optimization[ J]. International Conference on Computa- tions Science, 2013, 18:861 - 868.
  • 8KAUR M, KAUR N. Text clustering using PBO algorithm for analy- sis and optimization[ J]. International Journal of Current Engineering and Technology, 2014, 4(6) : 3876 - 3878.
  • 9SHARAWI M, EMARY E, SAROIT I A, et al. Flower pollination optimization algorithm for wireless sensor network lifetime global op- timization[ EB/OL]. [ 2010-10-10]. http://www, ijsce, org/attach- ments/File/v4i3/C2289074314, pdf.
  • 10PRATHIBA R, MOSES M B, SAKTHIVEL S. Flower pollination algorithm applied for different economic load dispatch problems[ J]. International Journal of Engineering and Technology, 2014, 6(2) : 1009 -1016.

共引文献151

同被引文献84

引证文献8

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部