期刊文献+

复杂环境大场景SAR图像飞机目标快速检测 被引量:10

Fast detection of aircrafts in complex large-scene SAR images
下载PDF
导出
摘要 随着人工智能与合成孔径雷达(synthetic aperture radar,SAR)技术的发展,基于卷积神经网络(convolutional neural network,CNN)的SAR图像自动目标识别技术取得了一定的突破.然而,由于飞机自身结构以及SAR成像机制的复杂性,在复杂环境大场景SAR图像中对飞机目标进行快速准确的检测依然存在挑战.为提升算法的检测能力,本文对现有检测算法的处理流程进行了分析与总结,并提出了一种复杂环境大场景SAR图像飞机目标快速检测算法.算法优化了整体检测流程,设计了基于灰度特征的机场区域精细化提取和基于CNN的飞机目标粗检测两大子模块,并采用了YOLOv3网络对机场区域以及飞机目标分别进行初步的提取与检测.实验结果表明,本文算法对复杂环境大场景SAR图像中的飞机目标具有高效的检测能力. With the development of artificial intelligence and synthetic aperture radar(SAR),some breakthroughs have been made in convolutional neural network(CNN)based SAR automatic target recognition(ATR).However,due to the complexity of aircraft’s structures and SAR imaging mechanisms,detecting aircrafts fast and accurately in complex large-scene SAR images is still challenging.To improve detecting performance of algorithms,this paper summarizes the processing flows of current detection algorithms,and proposes a fast detection algorithm for aircrafts in complex large-scene SAR images.The method optimizes the whole processing scheme,designs grayscale based airport refining extraction and CNN based aircraft detection modules as well as using YOLOv3 to extract airport areas and detect aircrafts.Experimental results illustrate that the proposed method could detect aircrafts efficiently in complex large-scene SAR images.
作者 赵琰 赵凌君 匡纲要 ZHAO Yan;ZHAO Lingjun;KUANG Gangyao(School of Electronic Science and Technology,National University of Defense Technology,Changsha 410073,China;State Key Laboratory of Complex Electromagnetic Environment Ef fects on Electronics and Information System,National University of Defense Technology,Changsha 410073,China)
出处 《电波科学学报》 EI CSCD 北大核心 2020年第4期594-602,共9页 Chinese Journal of Radio Science
基金 国家自然科学基金(61971426)。
关键词 飞机目标快速检测 复杂场景 合成孔径雷达(SAR) 自动目标识别(ATR) YOLOv3 卷积神经网络(CNN) fast aircraft detection complex scenes synthetic aperture radar(SAR) automatic target recognition(ATR) YOLOv3 convolutional neural network(CNN)
  • 相关文献

参考文献5

二级参考文献33

  • 1计科峰,高贵,匡纲要.一种子像素精度SAR图像目标峰值提取方法[J].计算机仿真,2004,21(9):63-66. 被引量:5
  • 2何壸,白妍,刘宏伟.一种基于中心矩特征的SAR图像目标识别方法[J].火控雷达技术,2006,35(2):74-77. 被引量:4
  • 3AN D X,LI Y H, HUANG X T, et al. Performance evaluation of frequency-domain algorithms for chirped low frequency UWB SAR data processing[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2014, 7(2) 678-690.
  • 4AN D X, HUANG X T, JIN T, et al. Extended non- linear chirp scaling algorithm for high-resolution highly squint SAR data focusing[J]. IEEE transactions on geo- science and remote sensing, 2012, 50(9): 3595-3609.
  • 5CHANG C Y, JIN M, CURLANDER J C. Squint mode SAR processing agorithms[C]//the 12th Cana- dian Symposium on Remote Sensing. Vancouver, July 10-14, 1989.
  • 6SMITH A M. A new approach to range-doppler SAR processing [J]. International journal of remote sens- ing, 1991(12): 235-251.
  • 7XINGMD, WUYF, ZHANGYD, etal. Azimuth resampling processing for highly squinted synthetic aperture radar imaging with several modes[J]. IEEE transactions on geoseience and remote sensing, 2014, 52(7) : 4339-4352.
  • 8AN D X, LI Y H, HUANG X T, et al. Performance evaluation of frequency-domain algorithms for chirpedlow frequency UWB SAR data processing[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2014, 7(2).. 678-690.
  • 9FRLIND P O, ULANDER L M H. Evaluation of angular interpolation kernels in fast back-projection SAR processing [J]. IEE proceedings radar, sonar and navigation, 2006, 153(3) : 243-249.
  • 10FOURMONT K. Non-equispaced fast Fourier trans- forms with applications to tomography[J]. The jour- nal of Fourier analysis and applications, 2003, 9 (5) : 431-441.

共引文献58

同被引文献129

引证文献10

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部