期刊文献+

电熔镁炉熔炼过程异常工况识别及自愈控制方法 被引量:10

Abnormal Condition Identification and Self-Healing Control Scheme for the Electro-Fused Magnesia Smelting Process
下载PDF
导出
摘要 本文提出了基于多源信息融合的电熔镁炉异常工况识别及自愈控制方法.通过分析与三种异常相关的专家知识及操作经验,本文提取了与异常工况相关的多源信息.通过融合多源信息,建立了用于异常工况识别的贝叶斯网络模型.根据异常工况的识别结果,利用剩余生命时间与控制变量调整量间的关系获得自愈控制措施.仿真结果表明提出的方法能够实现异常工况识别,并且能够区分严重程度,制定相应的自愈控制方案,获得比现有方法更好的性能. In this paper,the abnormal condition identification and self-healing scheme is proposed based on the multisource information fusion.By analyzing the expert knowledge and the experience of operators related with the abnormities,the related multi-source characteristics are extracted.The Bayesian networks are established to identify the abnormities by fusing the multi-source information.Based on the identification results,the self-healing control scheme can be obtained by the relationship between the remaining lifetime and the adjustment of control variables.The simulation results show that the proposed method is effective to identify the abnormal conditions and distinguish the abnormal degree.The corresponding self-healing control scheme can be made to remove the abnormal conditions.The proposed method owns the better performance than the existing research results.
作者 李荟 王福利 李鸿儒 LI Hui;WANG Fu-Li;LI Hong-Ru(College of Information Science and Engin eering,Northeast-ern University,Shenyang 110819;State Key Laboratory of Process Industry Automation,Ministry of Education,North-eastern University,Shenyang 110819)
出处 《自动化学报》 EI CSCD 北大核心 2020年第7期1411-1419,共9页 Acta Automatica Sinica
基金 国家自然科学基金(61533007,61873049) 国家重点研发计划(2017YFB0304205)资助。
关键词 电熔镁炉 多源信息融合 异常工况识别 贝叶斯网络 自愈控制 Electro-fused magnesium furnace multi-source information fusion abnormal condition identification Bayesian network self-healing control
  • 相关文献

参考文献7

二级参考文献53

  • 1顾根华,秦勤,薛丰.电熔镁砂炉主要工艺参数的研究[J].节能,1996,15(2):16-19. 被引量:1
  • 2薛丰,顾根华.电熔镁砂生产的节能途径[J].节能,1996,15(6):44-46. 被引量:7
  • 3Srinivasan B, Bonvin D. Controllability and stability of repetitive batch processes[J]. J of Process Control, 2007, 17(3): 285-295.
  • 4Saab S S. On the P-type learning control[J]. IEEE Trans on Automatic Control, 1994, 39(11): 2298-2302.
  • 5Xiong Zhi Hua, Zhang Jie. A batch-to-batch iterative optimal control strategy based on recurrent neural network models[J]. J of Process Control, 2005, 15(1): 11-21.
  • 6Krothapally M, Palanki S. A neural network strategy for batch process optimization[J]. Computers and Chemical Engineering, 1997, 21(1): 463-468.
  • 7Lee J H, Lee K S, Kim W C. Model-based iterative learning control with a quadratic criterion for time-varying linear systems[J]. Automatica, 2000, 36(5): 641-657.
  • 8Soumitra D, Wierenga B, Dalebout A. Case-based reasoning systems: From automation to decision-aiding and stimulation[J]. IEEE Trans on Knowledge and Data Engineering, 1997, 9(6): 911-922.
  • 9Garduno-Ramirez R, Lee K Y. Supervisory multiobjective optimization of a class of unit processes: Power unit case study[C]. Proc of the American Control Conf. Arlington: IEEE Press, 2001: 1497-1502.
  • 10KLEMEN P, REMY K, REDHA H, et al. A modelling- based methodology for evaluating the performance of a re- al-time embedded control system [ J ]. Simulation Model-ling Practice and Theory, 2011,19(7) :1594-1612.

共引文献70

同被引文献187

引证文献10

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部