期刊文献+

基于设备运行状态挖掘的非侵入式负荷分解方法 被引量:4

Non-intrusive Load Disaggregation Method Based on the Mining of Equipment Operating States
原文传递
导出
摘要 随着非侵入式负荷监测与用户侧智能电表的结合,基于低频电力数据实现负荷分解成为了最新的研究趋势。考虑到低频电力数据的特征,文章提出一种基于设备运行状态挖掘的非侵入式负荷分解方法。该方法首先进行负荷事件检测,并在负荷事件处提取功率特征;接着在特征平面内通过聚类算法获取表征不同类型负荷事件的聚类簇;最终采用图信号处理算法在聚类簇间挖掘设备运行状态并与数据库中的模板进行匹配实现负荷分解。算例验证了该方法事件检测和负荷分解的准确率,同时验证了在状态挖掘过程中引入设备运行周期能耗对额定功率相似设备的负荷分解具有优化效果。因此,为基于低频电力数据的非侵入式负荷分解技术研究提供了新思路。 With the combination of users’smart meter and non-intrusive load monitoring,research on load disaggregation based on low-rate power data has become the latest trend.On the basis of this,a non-intrusive load disaggregation method based on the mining of operating states is proposed in this paper.Firstly,this method detects load events and extracts power characteristic around load events.In the characteristic plane,a clustering algorithm is used to obtain clusters that represent different types of load events.Finally,among clusters,the GSP algorithm is used to mine equipment operation states that are matched with load templates stored in database to realize load disaggregation.The results of example in this paper verifies the accuracy of event detection and load disaggregation,and also verifies that the introduction of circle operation energy consumption in state mining process has an optimized effect on load disaggregation of devices with similar rated power.Accordingly,it provides a novel idea for the research of non-intrusive load disaggregation technology based on low-rate power data.
作者 庄卫金 张鸿 方国权 陈中 ZHUANG Weijin;ZHANG Hong;FANG Guoquan;CHEN Zhong(China Electric Power Research Institute,Nanjing 210003,China;School of Electrical Engineering,Southeast University,Nanjing 210096,China)
出处 《电力建设》 北大核心 2020年第8期9-16,共8页 Electric Power Construction
基金 国家重点研发计划项目(2017YFB0902600) 国家电网公司科技项目“大电网智能调度与安全预警关键技术研究及应用”(SGJS0000DKJS1700840)。
关键词 非侵入式负荷分解 事件检测 事件聚类 运行状态挖掘 家庭负荷 non-intrusive load disaggregation event detection event clustering operation states mining household load
  • 相关文献

参考文献9

二级参考文献103

  • 1熊亚军,廖晓农,李梓铭,张小玲,孙兆彬,赵秀娟,赵普生,马小会,蒲维维.KNN数据挖掘算法在北京地区霾等级预报中的应用[J].气象,2015,41(1):98-104. 被引量:53
  • 2白建华.印度大停电对我国电力发展的三大启示[EB/OL].[2012-08-07 ]. http://www. chinasmartgrid. com. cn/news/20120807/378483. shtml.
  • 3DAS T K, VENAYAGAMOORTHY G K, ALIYU U O. Bio-inspired algorithms for the design of multiple optimal powersystem stabilizers: SPPSO and BFA [ J ]. IEEE Trans onIndustry Application, 2008,44(5) : 1445-1457.
  • 4MAZUMDER S K, ACHARYA K, TAHIR M. Towardsrealization of a control-communication framework for interactivepower networks [ C ]// IEEE Energy 2030 Conference,November 17-18,2008,Atlanta, GA, USA.
  • 5LIGHTNER E M,WIDERGREN S E. An orderly transition toa transformed electricity system [J]. IEEE Trans on SmartGrid, 2010,1(1): 3-10.
  • 6MOSLEHI K,KUMAR R. A reliability perspective of thesmart grid[J]. IEEE Trans on Smart Grid, 2010,1(1) : 57-64.
  • 7ZHU Jun, ZHUANG E, IVANOV C, et al. A data-drivenapproach to interactive visualization of power systems [J].IEEE Trans on Power Systems, 2011,26(4) : 2539-2546.
  • 8FAHRIOGLU M, ALVARDO F L. Designing incentivecompatible contracts for effective demand managements [J ].IEEE Trans on Power Systems, 2000,15(4) : 1255-1260.
  • 9MARCEAU M L, ZMEUREANU R. Nonintrusive load disaggregation computer program to estimate the energy consumption of major end use in residential buildings[J]. Energy Conversion & Management, 2000, 41(13): 1389 1403.
  • 10HART G W. Nonintrusive appliance load monitoring [J ]. Proceedings of the IEEE, 1993, 80(12): 1870-1891.

共引文献333

同被引文献43

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部