期刊文献+

基于碳纳米管的超级电容器聚吡咯电极复合方法 被引量:1

Compound Method of Supercapacitor PPy Electrode Based on Carbon Nanotube
下载PDF
导出
摘要 针对聚吡咯超级电容器机械性能随着充放电循环而降低、循环稳定性差的缺陷,提出了基于多壁碳纳米管的超级电容器聚吡咯电极复合方法。形成的聚吡咯包覆多壁碳纳米管的结构有效地增大了电极材料的比表面积,增大了电极材料活性物质的利用率,提高了电极材料的电导率,改善了电极材料的快速充放电性能,同时很大程度上改善了聚吡咯的循环稳定性。利用脉冲电流沉积的方法制备用于超级电容器的聚吡咯与功能化多壁碳纳米管复合电极材料,其在3mol∙L^-1氯化钾电解液中,1000mV∙s^-1扫描速率下,经10万周循环后,容量仅衰减了16%。 For the defect that the mechanical properties of polypyrrole supercapacitors decrease with charge and discharge cycles,and the cycle stability is poor,a compound method of polypyrrole electrode for supercapacitors based on multi-walled carbon nanotubes is proposed.The structure of the formed polypyrrole coated multi-walled carbon nanotubes effectively increase the specific surface area of the electrode material,the utilization rate of the active material and the electrical conductivity,improve the rapid charge and discharge performance of the electrode material,and greatly improve cyclic stability of polypyrrole.The composite electrode material of polypyrrole and functionalized multi-walled carbon nanotubes for supercapacitors is prepared by pulse current deposition method.It is scanned at a scanning rate of 1000mV∙s^-1 in a 3mol∙L^-1 potassium chloride electrolyte,after 100,000-cycle,the capacity only declines by 16%.
作者 孙毅 展学磊 曾祥涛 SUN Yi;ZHAN Xue-lei;ZENG Xiang-tao(Changqing Branch No.6 Factory of CNPC,Xi’an 710200,Shaanxi;Xi'an Institute of Electromechanical Information Technology,Xi’an 710065,Shaanxi;Special Energy Group Xi'an Qinghua Co.,Ltd.,Xi’an 710025,Shaanxi)
出处 《电脑与电信》 2020年第6期82-84,共3页 Computer & Telecommunication
关键词 超级电容器 聚吡咯 多壁碳纳米管 super capacitor Polypyrrol(e PPy) multi-walled carbon nanotube(s MWNTs)
  • 相关文献

参考文献4

二级参考文献39

  • 1Boehm H P, et al. Dtlnnste kohlenstoff-folien [J]. Z Natur- forsch B, 1962, 17: 150-153.
  • 2Novoselov K S, Geim A K, Morezov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669.
  • 3Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
  • 4Avouris P, Chen Z, Perebeinos V. Carbon-based electron- ics[J]. Nature Nanotechnology, 2007, 2(10): 605-615.
  • 5Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Letters,2008, 8(3): 902-907.
  • 6Lee C, Wei X, Kysar J W, et al. Measurement of the e- lastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
  • 7Gomez-Navarro C, Burghard M, Kern K. Elastic properties of chemically derived single graphene sheets[J]. Nano Letters, 2008, 8(7): 2045-2049.
  • 8Cai W, Moore A L, Zhu Y, et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition [J]. Nano Letters, 2010, 10(5): 1645-1651.
  • 9Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene [J]. Sci- ence, 2008, 320(5881): 1308-1308.
  • 10Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Lon- gitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458(7240): 872-876.

共引文献70

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部