期刊文献+

基于密度标准误差的局部保持投影故障检测策略 被引量:3

Fault detection strategy based on density standard error associated with locality preserving projections
下载PDF
导出
摘要 针对协方差结构具有显著差异的多模态过程故障检测问题,本文提出一种基于密度标准误差的局部保持投影故障检测策略(LPP-DSE).首先,根据样本距离矩阵确定样本截止距离;接下来,应用截止距离计算每个样本的本质密度及其前k近邻样本的估计密度;最后,通过样本的密度误差及其k近邻密度的标准差构建统计量并完成过程监控.本文方法通过应用局部保持投影(LPP)对过程数据进行维数约减可以保证过程监控的及时性;同时,通过设计密度标准误差(DSE)统计量可以有效提高多模态过程的故障检测率.此外,本文给出基于贡献图的诊断方法能够准确识别故障发生的原因.通过数值例子和半导体工业实例测试,并与主元分析、邻域保持嵌入、局部保持投影、k近邻故障检测等方法比较,实验结果进一步验证了LPP-DSE方法的有效性. Aiming at the fault detection of multimodal processes with significant variation in covariance of each mode,a fault detection strategy based on density standard error associated with locality preserving projections(LPP-DSE)is proposed in this paper.Firstly,calculate the cutoff distance according to sample distance matrix.Secondly,calculate respectively the intrinsic density and the estimated density of a sample through cutoff distance.Finally,build a new statistic to accomplish process monitoring.In LPP-DSE,the timeliness of process monitoring is guaranteed by using locality preserving projections(LPP);meanwhile,the fault detection rate of a multimode process is improved through using density standard error(DSE)statistic.Moreover,the proposed fault diagnosis method based on contribution chart is able to identify accurately the abnormal variables.Compared with principal component analysis,neighborhood preserving embedding,LPP,k nearest neighbor rule and other methods,the effectiveness of LPP-DSE is verified by a numerical case and semiconductor etching process.
作者 张成 郭青秀 冯立伟 李元 ZHANG Cheng;GUO Qing-xiu;FENG Li-wei;LI Yuan(Research Center for Technical Process Fault Diagnosis and Safety,Shenyang University of Chemical Technology,Shenyang Liaoning 110142,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第8期1757-1765,共9页 Control Theory & Applications
基金 国家自然科学基金项目(61490701,61573088,61673279) 辽宁省自然科学基金项目(2019-MS-262) 辽宁省教育厅基金项目(LJ2019013)资助.
关键词 局部保持投影 K近邻 多模态过程 主元分析 故障检测 locality preserving projections k nearest neighbor multimodal process principal component analysis fault detection
  • 相关文献

参考文献5

二级参考文献29

  • 1陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:61
  • 2CHIANG L H, BRAATZ R D, RUSSELL E L. Fault Detection and Diagnosis in Industrial Systems[M]. Springer Science & Business Media, 2001.
  • 3QIN S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36 (2): 220-234.
  • 4LI G, QIN S J, ZHOU D. Geometric properties of partial least squares for process monitoring[J]. Automatica, 2010, 46 (1): 204-210.
  • 5SCH?LKOPF B, SMOLA A, MüLLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10 (5): 1299-1319.
  • 6TENENBAUM J B, SILVA V D, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290 (5500): 2319-2323.
  • 7ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290 (5500): 2323-2326.
  • 8BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15 (6): 1373-1396.
  • 9HE X F, NIYOGI P. Locality preserving projections[C]//Proceedings of Advances in Neural Information Processing Systems. MIT Press, 2004: 153-160.
  • 10HU K, YUAN J. Multivariate statistical process control based on multiway locality preserving projections[J]. Journal of Process Control, 2008, 18 (7): 797-807.

共引文献62

同被引文献26

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部