期刊文献+

基于有限时间观测器的离散系统混沌同步 被引量:6

Finite time observer-based synchronization for discrete-time chaotic systems
下载PDF
导出
摘要 本文基于驱动-响应模型针对一类离散时间混沌系统提出了一种基于有限时间观测器的同步方法.首先,将混沌系统写成具有未知输入的线性系统形式.随后,给出了观测器匹配条件和强可观条件.在观测器匹配条件的假设下,通过适当的状态变换,给出了具有降维形式的有限时间观测器设计框架使得该观测器不再受到未知输入的影响.然后,证明了强可观条件结合观测器匹配条件可以保证一个有限时间观测器的存在,该观测器可以使得响应系统达到对驱动系统的精确同步,且达到同步所需要的时间可以任意设定,不受观测器系统矩阵极点配置和初值条件的影响.最后,给出了两个混沌系统的例子验证了所提方法的有效性. Based on the drive-response configuration,this paper discusses the synchronization of a class of discretetime chaotic systems based on a finite-time observer.First,the chaotic system is written in the form of a linear system with unknown input.Subsequently,the strong observable condition and the observer matching condition are given.Under the assumption of the observer matching condition,the finite-time observer design framework with a reduced-order is given by using appropriate state transformations,where the observer is no longer affected by the unknown input.Then,the strong observable condition together with the observer matching condition guarantees the existence of a finite-time observer,which can achieve a precise synchronization between the response system and the driving system,and the synchronization time can be arbitrarily pre-defined,which neither depend on the observer gain matrix nor depend on the initial value condition.Finally,two chaotic systems are given as examples to illustrate the effectiveness of the proposed method.
作者 吴阳 张建成 WU Yang;ZHANG Jian-cheng(School of Mechano-Electronic Engineering,Wuxi Taihu University,Wuxi Jiangsu 214064,China;School of Science,Jiangnan University,Wuxi Jiangsu 214122,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第8期1855-1864,共10页 Control Theory & Applications
基金 国家自然科学基金项目(61803181) 中国博士后科学基金项目(2019M651695) 中央高校基本业务费项目(JUSRP11948)资助.
关键词 离散混沌系统 精确同步 有限时间观测器 discrete-time chaotic system exact synchronization finite-time observer
  • 相关文献

参考文献4

二级参考文献32

  • 1高铁杠,陈增强,袁著祉.基于鲁棒有限时控制的混沌系统的同步[J].物理学报,2005,54(6):2574-2579. 被引量:10
  • 2Pecora L M, Carroll T L. Synchronization in chaotic systems [J]. Physical Review Letters, 1990, 64(8) : 821- 82.
  • 3Ravoori B, Cohen A B, Setty A V, et al. Adaptive synchronization of coupled chaotic oscillators [ J ]. Phy-sical Review E, 2009, 80(5) : 056205.
  • 4ZHANG Yin-pin, SUN Ji-tao. Chaotic synchronization and anti-synchronization based on suitable separation [Jl. Physics Letter A, 2004, 330(6) : 442-447.
  • 5Kocarev L, Parlitz U. Generalized synchronization, p-redictability, and equivalence of uniderctionally coupl-ed dynamical systems [ J ]. Physical Review Letters, 1996,.76(11): 1816-1819.
  • 6Alvarez-Llamoza O, Cosenza M G. Generalized synchronization of chaos in autonomous systems [ J]. Physical Review E, 2008, 78(4) : 046216.
  • 7Boccaletti S, Kurths J, Osipov G, et al. The synchronization of chaotic systems [ J]. Physics Reports, 2002, 366(1/2) : 1-101.
  • 8Aviad Y, Reidler I, Kinzel W, et al. Phase synchronization in mutually coupled chaotic diode lasers [ J ]. Physical Review E, 2008, 78(2) : 025204.
  • 9Rosenblum M G, Pikovsky A S, Kurths J. From phase to lag synchronization in coupled chaotic oscillators [ J ]. Physical Review Letters, 1997, 78(22) : 41934196.
  • 10Sivaprakasam S, Shahverdiev E M, Spencer P S, et al. Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback [ J ]. Physical Review Letters, 2001, 87 (15) : 154101.

共引文献24

同被引文献41

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部