期刊文献+

利用CFD对不同尺寸上下冲击式速冻机静压腔流场的研究 被引量:3

Study on the Flow Field of Hydrostatic Cavity of Impinging Freezer with Different Sizes by CFD
下载PDF
导出
摘要 为进一步优化上下冲击式速冻机的冻结效果,本文以静压腔尺寸为4 m×1.5 m×2 m的实体速冻机为基础,保证入口压力为190 Pa、入口体积流量为2.64 m^3/s不变,提出了4 m×1.5 m×1.5 m、4 m×2 m×1.5 m、4 m×2 m×2 m、4 m×2.5 m×1.5 m、4 m×2.5 m×2 m等5种不同的静压腔尺寸,通过CFD来模拟静压腔尺寸变化对于速冻机内部流场的改变,从速冻机喷嘴出口风速、钢带表面气流的矢量分布、钢带表面换热强度及换热均匀性等方面来综合分析静压腔内部换热特性。结果表明:在静压腔入口流量相同、压力不变的情况下,唯有4 m×1.5 m×1.5 m的出口风速与原有尺寸的出口风速相差较小,其余尺寸的出口风速略小但变化幅度不明显。而该尺寸的换热强度以及换热均匀性却远不如4 m×2.5 m×1.5 m、4 m×2.5 m×2 m。此外,静压腔尺寸为4 m×2 m×2 m的换热强度虽然比4 m×1.5 m×2 m的换热强度高约4.85%,但均匀性较差,不足以成为优选设计。4 m×2.5 m×1.5 m与4 m×2.5 m×2 m的换热强度达到177.76和177.39,比原有尺寸下钢带表面换热强度高约6.81%和6.59%,且均匀性也为最佳。结合上述因素,4 m×2.5 m×1.5 m和4 m×2.5 m×2 m在出口风速、换热强度及均匀性方面均为5种尺寸中最优的设计。 Since traditional impact freezers have low freezing efficiency and high food weight loss,upper and lower impact freezers have gradually been recognized as new types with high efficiency by the food quick-freezing industry.In order to further optimize the freezing effect of the upper and lower impact freezers,a solid impact freezer with a hydrostatic cavity size of 4 m×1.5 m×2 m was taken as the baseline.The internal flow fields of five different dimensions of hydrostatic cavities including 4 m×1.5 m×1.5 m,4 m×2 m×1.5 m,4 m×2 m×2 m,4 m×2.5 m×1.5 m,and 4 m×2 m×2 m were simulated by computational fluid dynamics(CFD)with the inlet pressure of 190 Pa and inlet flow rate of 4.4 m^3/s.The internal heat transfer characteristics of the hydrostatic cavity were also analyzed comprehensively in terms of the nozzle outlet wind velocity of the impact freezer,vector distribution of the air flow on the surface of the steel belt,surface heat transfer intensity and heat transfer uniformity of the steel belt.The results showed that under the condition of the same inlet flow and constant pressure,only the outlet wind velocity of the cavity of dimensions 4 m×1.5 m×1.5 m differed slightly from that of the original size,and the wind velocities of the other sizes were slightly lower,but the range of change was not apparent.However,the heat transfer intensity and uniformity of this size were far less than those for the cavities with dimensions of 4 m×2.5 m×1.5 m and 4 m×2.5 m×2 m.In addition,although the heat transfer intensity of the hydrostatic cavity of dimensions 4 m×2 m×2 m was approximately 4.85%higher than that of the cavity of dimensions 4 m×1.5 m×2 m,its uniformity was poor and insufficient for it to be the optimal design.The heat transfer intensity of the cavities of dimensions 4 m×2.5 m×1.5 m and 4 m×2.5 m×2 m reached 177.76 and 177.39,which were approximately 6.81%and 6.59%higher than the surface heat transfer intensity of the steel belt under the original size.Additionally,the uniformity was the best.Combined with the above factors,the cavities of dimensions 4 m×2.5 m×1.5 m and 4 m×2.5 m×2 m were the optimal designs among the five sizes in terms of the outlet wind velocity,heat transfer intensity,and uniformity.
作者 顾翰文 谢晶 王金锋 Gu Hanwen;Xie Jing;Wang Jinfeng(Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai, 201306, China;Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, 201306, China;National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, 201306, China;College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China)
出处 《制冷学报》 CAS CSCD 北大核心 2020年第4期97-102,135,共7页 Journal of Refrigeration
基金 国家“十三五”重点研发项目(2018YFD0400605)资助 上海水产品加工及贮藏工程技术研究中心能力提升项目(19DZ2284000)资助。
关键词 冻结食品 冲击式速冻技术 静压腔 计算流体力学 frozen food impingement quick-freezing technology hydrostatic cavity computational fluid dynamics
  • 相关文献

参考文献5

二级参考文献24

  • 1张大林,常海萍,韩东,盛荣昌,张大林.有初始横流的冲击壁面强化的换热特性实验研究[J].航空动力学报,1996,11(3):269-272. 被引量:3
  • 2谭蕾,张靖周,谭晓茗.非均匀横流作用下冲击射流冷却的数值研究[J].航空动力学报,2006,21(3):528-532. 被引量:6
  • 3聂仕华.JETFreeze冲击式冻结装置[J].冷藏技术,1996,19(1):48-50. 被引量:1
  • 4Taslim M E, Bethka D. Experimental and numerical im- pingement heat transfer in an airfoil leading-edge cooling channel with cross flow[J]. ASME Journal of Turbomach- inery,2009,131(1):011021(7 pages).
  • 5Pamula G,Ekkad S V, Acharya S. Influence of crossflow- induced swirl and impingement on heat transfer in a two- pass channel connected by two rows of holes [J]. ASME Journal of Turbomachinery, 2001,123 (2) : 281-287.
  • 6Florschuetz L W, Truman C R, Metzger D E. Streamwise flow and heat transfer distributions for jet array impinge- ment with crossflow[J]. ASME Journal of Heat Transfer, 1981,103 (2) : 337-342.
  • 7Florschuetz L W, Metzger D E, Su C C. Heat transfer characteristics for jet array impingement with initial cross- flow[J]. ASME Journal of Heat Transfer, 1984,106( 1): 34 -41.
  • 8Metzger D E, Florschuetz L W, Takeuchi D I, et al. Heat transfer characteristics for inline and staggered arrays of circular jets with crossflow of spent air[J]. ASME Journal of Heat Transfer,1979,101(3) :526-531.
  • 9Katti V V,Prabhu S V. Influence of spanwise pitch on lo cal heat transfer for multiple jets with crossflow[J], Jour- nal of Thermophysics and Heat Transfer, 2008,22 (4) : 654- 668.
  • 10Katti V V,Prabhu S V. Influence of streamwise pitch on the local heat transfer characteristics for in line arrays of circular jets with crossflow of spent air in one direction [J]. Heat Mass Transfer,2009,45(9) : 1167- 1184.

共引文献35

同被引文献32

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部