期刊文献+

基于多分支全卷积神经网络的低照度图像增强 被引量:3

Low-Light Image Enhancement Based on Multi-Branch All Convolutional Neural Network
原文传递
导出
摘要 针对低照度条件下图像对比度不高、颜色失衡和存在噪声等问题,提出了一种基于多分支全卷积神经网络(MBACNN)的低照度图像增强模型。该模型是一个端到端的模型,包含特征提取模块(FEM)、增强模块(EM)、融合模块(FM)和噪声提取模块(NEM)。通过对合成的低照度和高清图像样本进行训练,根据验证集的损失值不断调整模型参数,以得到最优模型;然后对合成低照度图像和真实低照度图像进行测试。实验结果表明,与传统的图像增强算法相比,所提出的模型能够有效提高图像对比度、调整颜色失衡并去除噪声,主观视觉和客观图像质量评价指标都得到进一步改善。 ing at the problems of low image contrast,color imbalance,and noise in low-light conditions,a low-light image enhancement model based on multi-branch all convolutional neural network(MBACNN)is proposed.The model is an end-to-end model,including feature extraction module(FEM),enhancement module(EM),fusion module(FM),and noise extraction module(NEM).By training the synthesized low-light and high-definition image sample,the model parameters are continuously adjusted according to the loss value of the verification set to obtain the optimal model,and then the synthetic low-light image and the real low-light image are tested.Experimental results show that compared with traditional image enhancement algorithms,the proposed model can effectively improve image contrast,adjust color imbalance,and remove noise.Both subjective visual and objective image quality evaluation indicators are further improved.
作者 吴若有 王德兴 袁红春 宫鹏 陈冠奇 王丹 Wu Ruoyou;Wang Dexing;Yuan Hongchun;Gong Peng;Chen Guanqi;Wang Dan(School of Information,Shanghai Ocean University,Shanghai 201306,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第14期189-199,共11页 Laser & Optoelectronics Progress
基金 国家自然科学基金(41776142)。
关键词 图像处理 卷积神经网络 特征融合 低照度图像增强 注意力机制 image processing convolutional neural network feature fusion low-light image enhancement attention mechanism论文信息
  • 相关文献

参考文献5

二级参考文献47

  • 1郑刚,贾振红.同态技术在红外图像处理中的应用[J].光子学报,2005,34(9):1401-1403. 被引量:22
  • 2王炳健,刘上乾,拜丽萍.红外图像实时增强的新算法[J].光电工程,2006,33(1):46-49. 被引量:19
  • 3张懿,刘旭,李海峰.自适应图像直方图均衡算法[J].浙江大学学报(工学版),2007,41(4):630-633. 被引量:38
  • 4杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J].电子学报,2007,35(7):1313-1317. 被引量:62
  • 5WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:From error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.
  • 6CHEN G,YANG C,XIE S.Gradient-based structural similarity for image quality assessment[C]// Proceedings of IEEE International Conference on Image Processing.Piscataway:IEEE Press,2006:2929-2932.
  • 7CHEN Y,LIAO B.An image quality assessment algorithm based on dual-scale edge structure similarity[C]//Proceedings of the Second International Conference on Innovative Computing,Information and Control.Piscataway:IEEE Press,2007:56-58.
  • 8SHNAYDERMAN A,GUSEV A,ESKICIOGLU A M.An SVD-based grayscale image quality measure for local and global assessment[J].IEEE Transactions on Image Processing,2006,15(2):422-429.
  • 9NILL N B,BOUZAS B H.Objective image quality measure derived from digital image power spectra[J].Optical Engineering,1992,31(4):813-825.
  • 10LUO H.A training-based no-reference image quality assessment algorithm[C]// Proceedings of IEEE International Conference on Image Processing.Piscataway:IEEE Press,2004:2973-2976.

共引文献199

同被引文献16

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部