期刊文献+

基于邻域表面形变信息加权的点云配准 被引量:3

Point Cloud Registration Based on Weighting Information of Neighborhood Surface Deformation
原文传递
导出
摘要 为了提高点云的配准精度,解决单一特征导致迭代最近点(ICP)算法在噪声干扰和数据缺失的情况下鲁棒性差的问题,提出一种基于邻域表面形变信息加权的点云配准方法。先为简化点的邻域信息提出以邻近点数量为约束的邻域构建方法,考虑邻近点对采样点的影响并引入加权方法提高内部形态描述子(ISS)特征点提取算法的提取效率;计算邻域的法向量内积均值对点云进行第二次特征点提取;再利用快速点特征直方图(FPFH)进行特征描述,并运用双重约束条件确定匹配点对关系;最后在配准阶段,采用双向k维树ICP(DTICP)算法来实现精确配准。实验结果表明,与经典ICP算法相比,所提方法能够在噪声环境下有效配准缺失点云,具有较好的鲁棒性和抗干扰性。 To improve the registration accuracy of a point cloud,the problem of poor robustness of the iterative closest point(ICP)algorithm under the condition of noise interference and data loss caused by a single feature needs to be solved.Accordingly,a point cloud registration method based on weighting neighborhood surface deformation information is proposed.First,to simplify the neighborhood information of points,a neighborhood construction method based on the number of neighboring points as the constraint is proposed,and considering the influence of neighbors on the sampling points,a weighting method is introduced to improve the extraction efficiency of the intrinsic shape signature(ISS)feature point extraction algorithm.Second,the mean value of the normal vector inner product of the neighborhood is calculated to perform the second feature point extraction of the point cloud.Then,the fast point feature histogram(FPFH)is used to describe the feature,and the double constraint condition is used to determine the matching point pair relationship.Finally,in the registration phase,accurate registration is achieved by using the bidirectional k-tree ICP(DTICP)algorithm.Experiment results reveal that the proposed algorithm can effectively register missing point clouds in a noisy environment with better robustness and anti-interference compared with the classical ICP algorithm.
作者 李新春 闫振宇 林森 LiXinchun;YanZhenyu;Lin Sen(School of Electronic and Information Engineering,Liaoning Technical University,Huludao,Liaoning 125100,China;State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang,Liaoning 110016,China;Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang,Liaoning 110016,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第14期308-315,共8页 Laser & Optoelectronics Progress
基金 辽宁省自然科学基金面上项目(2015020100) 辽宁省教育厅科学研究一般项目(L2014132)。
关键词 成像系统 机器视觉 点云配准 加权方式 特征点提取 迭代最近点 imaging systems machine vision point cloud registration weighting method feature point extraction iterative closest point
  • 相关文献

参考文献14

二级参考文献170

  • 1朱延娟,周来水,张丽艳,刘爽.基于Hausdorff距离的多尺度轮廓匹配算法[J].中国机械工程,2004,15(17):1553-1556. 被引量:26
  • 2罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,44(8):1104-1106. 被引量:100
  • 3张学昌,习俊通,严隽琪.基于点云数据的复杂型面数字化检测技术研究[J].计算机集成制造系统,2005,11(5):727-731. 被引量:27
  • 4林文惠.刚体运动学的几何讨论[J].力学与实践,2005,27(5):71-72. 被引量:11
  • 5朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481. 被引量:97
  • 6P J Besl, H D McKay. A method for registration of 3 D shapes [J]. 1EEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.
  • 7G C Sharp, S W Lee, D K Wehe. ICP registration using invariant features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1). 90-102.
  • 8S Rusinkiewicz, M Levoy. Efficient variants of the ICP algorithm [C]. Quebec City: Proceedings of the 3rd International conference on 3 D Digital Imaging and Modeling, 2001. 145-152.
  • 9J Jiang, J Cheng, X L Chen. Registration for 3-D point clouds using angular invariant feature[J]. Neuro Computing, 2009, 72 (16 18): 3839-3844.
  • 10C Basdogan, A C Oztireli. A new feature based method for robust and efficient rigid body registration of overlapping point clouds[J]. The Visual Computer, 2008, 24(7-9)~ 679-688.

共引文献263

同被引文献27

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部