期刊文献+

基于球形矩匹配与特征判别的图像超分辨率重建

Image super-resolution reconstruction based on spherical moment matching and feature discrimination
下载PDF
导出
摘要 由于网络训练不稳定,基于生成对抗网络(GAN)的图像超分辨率重建存在模式崩溃的现象。针对此问题,提出了一种基于球形几何矩匹配与特征判别的球面双判别器超分辨率重建网络SDSRGAN,通过引入几何矩匹配与高频特征判别来改善网络训练的稳定性。首先,生成器对图像提取特征并通过上采样生成重建图像;接着,球面判别器将图像特征映射至高维球面空间,充分利用特征数据的高阶统计信息;然后,在传统判别器的基础上增加特征判别器,提取图像高频特征,重建特征高频分量和结构分量两方面;最后,对生成器与双判别器进行博弈训练,提高生成器重建图像质量。实验结果表明,所提算法能有效收敛,其网络能够稳定训练,峰值信噪比(PSNR)为31.28 dB,结构相似性(SSIM)为0.872,而与双三次差值、超分辨率残差网络(SRResNet)、加速的卷积神经网络超分辨率(FSRCNN)、基于GAN的单图像超分辨率(SRGAN)和增强型超分辨率生成对抗网络(ESRGAN)算法相比,所提算法的重建图像具有更加逼真的结构纹理细节。所提算法为基于GAN的图像超分辨率研究提供了球形矩匹配与特征判别的双判别方法,在实际应用中可行且有效。 Due to the instability of network training,the image super-resolution reconstruction based on Generative Adversarial Network(GAN)has a mode collapse phenomenon.To solve this problem,a Spherical double Discriminator Super-Resolution Generative Adversarial Network(SDSRGAN)based on spherical geometric moment matching and feature discrimination was proposed,and the stability of network training was improved by adopting geometric moment matching and discrimination of high-frequency features.First of all,the generator was used to produce a reconstructed image through feature extraction and upsampling.Second,the spherical discriminator was used to map image features to high-dimensional spherical space,so as to make full use of higher-order statistics of feature data.Third,a feature discriminator was added to the traditional discriminator to extract high-frequency features of the image,so as to reconstruct both the characteristic highfrequency component and the structural component.Finally,game training between the generator and double discriminator was carried out to improve the quality of the image reconstructed by the generator.Experimental results show that the proposed algorithm can effectively converge,its network can be stably trained,and has Peak Signal-to-Noise Ratio(PSNR)of 31.28 dB,Structural SIMilarity(SSIM)of 0.872.Compared with Bicubic,Super-Resolution Residual Network(SRResNet),Fast Super-Resolution Convolutional Neural Network(FSRCNN),Super-Resolution using a Generative Adversarial Network(SRGAN),and Enhanced Super-Resolution Generative Adversarial Network(ESRGAN)algorithms,the reconstructed image of the proposed algorithm has more precise structural texture characteristics.The proposed algorithm provides a double discriminant method for spherical moment matching and feature discrimination for the research of image super-resolution based on GAN,which is feasible and effective in practical applications.
作者 林静 黄玉清 李磊民 LIN Jing;HUANG Yuqing;LI Leimin(School of Information Engineering,Southwest University of Science and Technology,Mianyang Sichuan 621010,China)
出处 《计算机应用》 CSCD 北大核心 2020年第8期2345-2350,共6页 journal of Computer Applications
基金 国家自然科学基金面上项目(61673220)。
关键词 生成对抗网络 图像超分辨率重建 高频特征 双判别器 模式崩溃 Generative Adversarial Network(GAN) image super-resolution reconstruction high-frequency feature double discriminator mode collapse
  • 相关文献

参考文献2

二级参考文献15

  • 1张航,罗大庸.图像盲复原算法研究现状及其展望[J].中国图象图形学报(A辑),2004,9(10):1145-1152. 被引量:53
  • 2TSAI R Y, HUANG T S. Multiframe image restoration and registration[ C]//Advances in Computer Vision and Image Processing. [ S. l. ] : JAI Press, 1984, 1:317 -339.
  • 3LEE E S, KANG M G. Regularized adaptive high-resolution image reconstruction considering inaccurate subpixel registration[ J]. IEEE Transactions on Image Processing, 2003, 12(7): 826- 837.
  • 4ELAD M, HEL-OR Y. A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur [ J]. IEEE Transactions on Image Processing, 2001, 10(8):1187 -1193.
  • 5FARSIU S , ROBINSON M D , ELAD M , et al . Fast and robust multiframe super resolution [ J]. IEEE Transactions on Image Processing, 2004, 13(10) : 1327 - 1344.
  • 6LERTRATTANAPANICH S , BOSE N K . High resolution image formation from low resolution frames using Delaunay triangulation[ J]. IEEE Transactions on Image Processing, 2002, 11(12) : 1427 - 1441.
  • 7ZITOVA B, FLUSSER J. Image registration methods: A survey[ J]. Image and Vision Computing. 2003, 21( 11): 977 -1000.
  • 8GALATSANOS NP, KATSAGGELOSAK, CHIN RT, et al.Least squares restoration of muhichannel images [ J]. IEEE Transactions on Signal Processing, 1991,39(10) : 2222 - 2236.
  • 9SROUBEK F, FLUSSER J. Multichannel blind iterative image restoration [ J]. IEEE Transactions on Image Processing, 2003, 12 (9) : 1094 - 1106.
  • 10CHEN L, YAP K-H. A parametric double regularization approach to adaptive blind image deconvolution [ J]. IEEE Transactions on Image Processing, 2005, 14(5) : 624 -633.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部