期刊文献+

基于连续图像深度学习的Wi-Fi人体行为识别方法 被引量:6

Sequential image deep learning-based Wi-Fi human activity recognition method
下载PDF
导出
摘要 针对基于深度学习的Wi-Fi人体行为识别技术存在抗噪声能力弱、信号尺寸不兼容和特征提取不充分等问题,提出了一种基于连续图像深度学习的识别方法。首先把时变Wi-Fi信号重构为若干个连续图像帧,确保输入尺寸一致;进而设计低秩分解算法,对噪声湮没的关键运动信息进行分离;同时提出一种时间域和空间域信息融合的深度模型,自动捕捉变长图像序列的时空域特征,并在WiAR数据集和自主采集数据集上对所提方法进行验证。实验结果表明,所提方法平均识别精度分别为0.94和0.96,具备普适场景下的高精度和稳健性。 For the problems existing in most of the researches,such as weak anti-noise ability,incompatible signal size and insufficient feature extraction of deep-learning-based Wi-Fi human activity recognition,a kind of sequential image deep learning-based recognition method was proposed.Based on the idea of sequential image deep learning,a series of image frames were reconstructed from time-varied Wi-Fi signal to ensure the consistency of input size.In addition,a low-rank decomposition method was innovatively designed to separate low-rank activity information merged in noises.Finally,a deep model combining temporal stream and spatial stream was proposed to automatically capture the spatiotemporal features from length-varied image sequences.The proposed method was extensively tested in WiAR dataset and self collected dataset.The experimental results show the proposed method could achieve the accuracy of 0.94 and 0.96,which indicate its high-accuracy performance and robustness in pervasive environments.
作者 周启臻 邢建春 杨启亮 韩德帅 ZHOU Qizhen;XING Jianchun;YANG Qiliang;HAN Deshuai(College of Defense Engineering,Army Engineering University of PLA,Nanjing 210007,China;College of Combat Support,Rocket Force University of Engineering,Xi’an 710025,China)
出处 《通信学报》 EI CSCD 北大核心 2020年第8期43-54,共12页 Journal on Communications
基金 国家重点研发计划基金资助项目(No.2017YFC0704100)。
关键词 行为识别 Wi-Fi信号 深度学习 图像识别 低秩分解 activity recognition Wi-Fi signal deep learning image recognition low-rank decomposition
  • 相关文献

参考文献6

二级参考文献15

共引文献155

同被引文献39

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部