期刊文献+

基于JMS-SMC-PHD滤波的检测前跟踪算法 被引量:5

A Track-Before-Detect Algorithm Based on a JMS-SMC-PHD Filter
下载PDF
导出
摘要 针对低信噪比条件下机动目标的检测与跟踪问题,提出跳跃马尔可夫系统下的序贯蒙特卡罗概率假设密度(JMS-SMC-PHD)滤波的检测前跟踪算法。该算法在机动目标数目和模型未知情况下,直接利用红外传感器量测数据,通过在目标状态矢量中增加模型变量并利用马尔可夫模型概率转移矩阵结合序贯蒙特卡罗概率假设密度(SMC-PHD)滤波,实现机动弱小目标的检测前跟踪。仿真结果表明所提方法可以有效地实现目标的检测与跟踪。 In view of the problem of detecting and tracking maneuvering small targets at low signal-to-noise,a track-before-detect algorithm based on sequential Monte Carlo probability hypothesis density filtering for Jump-Markov systems(JMS-SMC-PHD)is presented.Under the condition of an unknown number of maneuvering targets and unknown models,the algorithm achieves track-before-detect of small maneuvering targets by using measurement data from infrared sensors directly,adding a variable that denotes the dynamics model of the target,and using a Markov model probability transfer matrix combined with an SMC-PHD filter.Simulation results show that the proposed method can effectively implement target detection and tracking performance.
作者 薛秋条 宁巧娇 吴孙勇 蔡如华 伍雯雯 XUE Qiutiao;NING Qiaojiao;WU Sunyong;CAI Ruhua;WU Wenwen(School of Mathematics and Computing Science,Guilin University of Electronic Technology,Guilin 541004,China;Guangxi Key Laboratory of Cryptography and Information Security,Guilin 541004,China)
出处 《红外技术》 CSCD 北大核心 2020年第8期783-788,共6页 Infrared Technology
基金 国家自然科学基金项目(61861008,11661024) 广西研究生教育创新计划项目(2020YCXS084) 广西高校数据分析与计算重点实验室开放基金项目资助。
关键词 检测前跟踪 跳跃马尔可夫系统 概率假设密度滤波 序贯蒙特卡罗 机动弱小目标 track-before-detect jump-Markov systems probability hypothesis density(PHD)filter sequential Monte Carlo maneuvering small targets
  • 相关文献

参考文献5

二级参考文献68

  • 1Streit R L, Graham M L, Walsh M J. Multitarget tracking of distributed targets using histogram-PMHT. Digital Signal Processing 2002; 12(2-3): 394-404.
  • 2Efe M, Parkfiliz A G. Multi-target tracking in clutter with histogram probabilistic multi-hypothesis tracker. International Conference on Systems Engineering. 2005; 137-142.
  • 3Boers Y, Driessen H. A particle filter based detection scheme. IEEE Signal Processing Letters 2003; 10(10): 300-302.
  • 4Rutten M G, Gordona N J, Maskell S. Efficient particle-based track-before-detect in Rayleigh noise. The 7th International Conference on Information Fusion. 2004; 693-700.
  • 5Salmond D J, Birch H. A particle filter for track-before-detect. Proceedings of American Control Conference. 2001; 3755-3760.
  • 6Boers Y, Driessen J N. Multitarget particle filter track before detect application. IEE Proceedings—Radar, Sonar and Navigation 2004; 151(6): 351-357.
  • 7Davey S J, Rutten M G. A comparison of three algorithms for tracking dim targets. International Conference on Information, Decision and Control. 2007: 342-347.
  • 8Kirubarajan T, Barshalom Y. Probabilistic data association techniques for target tracking in clutter. Proceedings of IEEE 2004; 92(3): 536-557.
  • 9Pertil P. A track before detect approach for sequential Bayesian tracking of multiple speech sources. International Conference on Acoustics Speech and Signal Processing. 2010; 4974-4977.
  • 10Buzzi S, Lops M, Venturino L. Track-before-detect procedures for early detection of moving target from airbone radars. IEEE Transactions on Aerospace and Electronic Systems 2005; 41(3): 937-954.

共引文献56

同被引文献26

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部