期刊文献+

基于RTV模型图像分解的去雾算法 被引量:1

Image Dehazing Method Based on Image Decomposition of RTV Model
下载PDF
导出
摘要 针对暗通道先验去雾算法出现的纹理细节丢失、边缘模糊、天空与明亮区域失真等问题,提出了一种基于RTV模型图像分解的去雾算法。首先利用相对全变分(RTV)模型将有雾图像分解为结构层与纹理层,然后建立一个指示纹理区域的遮罩对纹理层进行优化来解决纹理细节丢失的问题。为了减少结构层边缘的深度跳跃现象,建立了加权L1正则化模型对初始透射率进行优化。同时针对天空与明亮区域出现的失真现象,引入容差机制优化了该区域的透射率。最后将优化后的纹理层与去雾后的结构层重组得到最终的复原图像。实验结果表明,该算法复原后的图像在平均梯度以及边缘强度等客观评价指标上均好于其他几种对比算法,基本达到了纹理细节突出,边界清晰,饱和度适中的处理效果。 In this paper,a defogging algorithm based on image decomposition of RTV model is proposed to solve the problems of losing details,edge blur,sky and bright region distortion in the traditional dark channel prior defogging method.In order to solve the problem of missing texture details,the fog image is decomposed into a structure layer and a texture layer by using relative total variation,then a mask indicating the texture area is created to optimize the texture layer.In order to reduce the depth jump phenomenon at the edge of the structural layer,a weighted L1 regularization model is established to optimize the initial transmittance.At the same time,the distortion of the region is corrected by the tolerance K for the distortion phenomenon occurring in the sky and the bright region.Finally,the optimized texture layer and the defogged structural layer are recombined to obtain the final restored image.The experimental results show that the reconstructed image is higher than other comparison algorithms in terms of average gradient and edge intensity;and the effect of outstanding detail,clear boundary and moderate saturation are basically achieved.
作者 王尧 段锦 叶得前 宋宇 朱一峰 WANG Yao;DUAN Jin;YE De-qian;SONG Yu;ZHU Yi-feng(School of Electrical and Information Engineering,Changchun University of Science and Technology,Changchun 130022)
出处 《长春理工大学学报(自然科学版)》 2020年第4期99-106,共8页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 国家重点研发计划(2017YFC0803806) 国家自然科学基金联合基金(U1731240) 吉林省科技发展计划(20160204066GX)。
关键词 图像去雾 相对全变分模型 纹理优化 加权L1正则化模型 image defogging relative total variation texture optimization weighted L1 regularization model
  • 相关文献

参考文献3

二级参考文献19

  • 1Provenzi E,Fierro M,Rizzi A,et al.Random spray Retinex:a new Retinex implementation to investigate the local properties of the mode[J].IEEE Transactions on Image Processing,2007,16(1):162-471.
  • 2Tan R T.Visibility in bad weather from a single image[A].Proceedings of the IEEE CVPR[C].USA:IEEE,2008.1-8.
  • 3Fattal R.Single image dehazing[J].Proceedings of SIGGRAPH,2008,27(3):1-9.
  • 4Tarel J,Hauti N.Fast visibility restoration from a single color or gray level image[A].Proceedings of the IEEE CVPR[C].USA:IEEE,2009.2201-2208.
  • 5K He,J Sun,X O Tang.Single image haze removal using dark channel prior[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(12):2341-2353.
  • 6T M Bui,H N Tran,W Kim,S Kim.Segmenting dark channel prior in single image dehazing[J].Electronics Letters,2014,50(7):516-518.
  • 7Bo Li,Shuhang Wang,Jin Zheng,Liping Zheng.Single image haze removal using content-adaptive dark channel and post enhancement[J].IET Computer Vision,2014,8(2):131-140.
  • 8杨万挺,汪荣贵,方帅,张璇.滤波器可变的Retinex雾天图像增强算法[J].计算机辅助设计与图形学学报,2010,22(6):965-971. 被引量:43
  • 9蒋建国,侯天峰,齐美彬.改进的基于暗原色先验的图像去雾算法[J].电路与系统学报,2011,16(2):7-12. 被引量:133
  • 10吴成茂.直方图均衡化的数学模型研究[J].电子学报,2013,41(3):598-602. 被引量:101

共引文献80

同被引文献27

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部