期刊文献+

基于ABC-SVM固体氧化物燃料电池电堆建模与仿真 被引量:2

Modeling and Simulation of Solid Oxide Fuel Cell Stack Based on ABC-SVM
下载PDF
导出
摘要 为了更好地满足工程上对SOFC(solid oxide fuel cell)性能预测和控制方案设计要求,提出利用人工蜂群算法(ABC)优化支持向量机(SVM)来建立SOFC电堆模型。通过利用ABC算法优化SVM参数(核函数值宽度和惩罚因子),采用优化后的参数作为SVM的初始参数建立模型,与SVM、GA-SVM和PSO-SVM模型进行对比。实验结果表明:ABC-SVM模型平均平方误差小,说明该算法可以很好的预测在不同氢气流速下SOFC的电压/电流特性曲线。该模型对SOFC预测和控制方案设计有一定价值。 In order to better meet the engineering requirements for SOFC performance prediction and control scheme design,an artificial bee colony algorithm(ABC)optimization support vector machine(SVM)is proposed to establish the SOFC stack model.By using the ABC algorithm to optimize the SVM parameters(the kernel function with and the penalty coefficient),the optimized parameters are used as the initial parameters of the SVM.The model is compared with the SVM,GA-SVM and PSO-SVM models.The experimental results show that the ABC-SVM model s average squared error is small,which indicates that the algorithm can predict the voltage/current characteristic curve of SOFC under different hydrogen flow rates.The model has certain value for SOFC prediction and control scheme design.
作者 靳方圆 周海峰 熊超 JIN Fangyuan;ZHOU Haifeng;XIONG Chao(School Marine Engineering,Jimei University,Xiamen 361021,China;Key Laboratory of Naval Architecture and Ocean Marine Engineering of Fujian Province,Xiamen 361021,China)
出处 《集美大学学报(自然科学版)》 CAS 2020年第4期293-298,共6页 Journal of Jimei University:Natural Science
基金 国家自然科学基金项目(51179074) 福建省自然科学基金项目(2018J01495) 福建省高校重点实验室项目(B17119) 集美大学科研启动基金项目(ZQ2013007) 集美大学产学研项目(S20127) 福建省教育厅项目(JAT190335、JAT180269)。
关键词 固体氧化物燃料电池(SOFCs) 人工蜂群算法(ABC) 支持向量机(SVM) 电堆建模 solid oxide fuel cells(SOFCs) artificial bee colony algorithm(ABC) support vector machine(SVM) modeling
  • 相关文献

参考文献2

二级参考文献33

  • 1谢宏,魏江平,刘鹤立.短期负荷预测中支持向量机模型的参数选取和优化方法[J].中国电机工程学报,2006,26(22):17-22. 被引量:93
  • 2Costamagna P, Magistri L, Massardo A F. Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine [J]. Journal of Power Sources (S0378-7753), 2001, 96(2): 352-368.
  • 3Hall D J, Colclaser R G Transient modeling and simulation of a tubular solid oxide fuel cell [J]. IEEE Transactions on Energy Conversion (S0885-8969), 1999, 14 (3): 749-753.
  • 4Iora P, Aguiar P, Adjiman C S, Brandon N P. Comparison of two IT DIR-SOFC models: Impact of variable thermodynamic, physical, and flow properties. Steady-state and dynamic analysis [J]. Chemical Engineering Science (S0009-2509), 2005, 60(11): 2963-2975.
  • 5Sudaprasert K, Travis R P, Martinez-Botas R F. A computational fluid dynamics model of a solid oxide fuel cell [J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy (S0957-6509), 2005, 219(A3): 159-167.
  • 6Aguiar P, Adjiman C S, Brandon N E Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance [J]. Journal of Power Sources (S0378-7753), 2004, 138(1-2): 120-136.
  • 7Costamagna P, Selimovic A, Del Borghi M, Agnew G. Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC) [J]. Chemical Engineering Journal (S1385-8947), 2004,102(1): 61-69.
  • 8Arriagada J, Olausson P, Selimovic A, Artificial neural network simulator for SOFC performance prediction [J]. Journal of Power Sources (S0378-7753), 2002, 112 (1): 54-60.
  • 9Rakotomamonjy A, Le Riche R, Gualandris D, Harchaotli Z. A comparison of statistical learning approaches for engine torque estimation [J]. Control Engineering Practice (S0967-0661), 2008, 16 (1): 43-55.
  • 10Kermani B G, Kozlov I, Melnyk P, Zhao C, Hachmann J, Barker D, Lebl M. Using support vector machine regression to model the retention of peptides in immobilized metal-affinity chromatography [J]. Sensors and Actuators, B: Chemical (S0925-4005), 2007, 125(1): 149o157.

共引文献24

同被引文献7

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部