期刊文献+

基于改进鲸鱼优化的覆盖表生成算法 被引量:1

A coverage table generation algorithm based on improved whale optimization
下载PDF
导出
摘要 为提高组合测试中覆盖表生成效率,基于覆盖表生成的离散性,提出一种改进的鲸鱼优化算法。该算法首先利用编码转换的思想,将鲸鱼个体连续运动方式编码为适用于覆盖表的离散方式;其次,在算法的开发与搜索阶段加入迭代演化算子,以提高算法的全局搜索能力;最后,针对覆盖表生成中算法本身的局限问题,使用平均海明距离跳出局部最优,并通过约束求解器和惩罚函数法增加约束处理机制,以提高算法实际应用能力。实验结果表明,与其它已有算法相比,所提出的算法在覆盖表生成规模上具有更好的优势。 In order to improve the efficiency of coverage table generation in combination test,an improved whale optimization algorithm based on the discreteness of coverage table generation is proposed.Firstly,it uses the idea of encoding transformation to change the continuous motion mode of individual whale to the discrete mode of coverage table generation.Secondly,an iterative evolution operator is added to further improve the search ability in the development and search phase of the algorithm.Finally,aiming at the limitation problem of the algorithm itself in coverage table generation,it introduces the average hamming distance to jump out of the local optimum.Constraint handing mechanism is added by constraint solver and penalty function method,so as to improve the practical application ability of the algorithm.Experimental results show that the proposed algorithm has better advantages than he other existing algorithms in the scale of coverage table generation.
作者 刘向婷 曹小鹏 LIU Xiang-ting;CAO Xiao-peng(School of Computer Science & Technology,Xi’an University of Posts and Telecommunications,Xi’an 710121,China)
出处 《计算机工程与科学》 CSCD 北大核心 2020年第8期1374-1382,共9页 Computer Engineering & Science
基金 国家自然科学基金(61136002) 陕西省工业公关资助项目(2014k06-36) 陕西省教育厅科技计划资助项目(2013JK1128)。
关键词 组合测试 鲸鱼优化 覆盖表生成 约束处理 combinatorial test whale optimization coverage table generation constraint handing
  • 相关文献

参考文献6

二级参考文献59

  • 1王子元,聂长海,徐宝文,史亮.相邻因素组合测试用例集的最优生成方法[J].计算机学报,2007,30(2):200-211. 被引量:25
  • 2胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:336
  • 3傅博.基于蚁群算法的软件测试数据自动生成[J].计算机工程与应用,2007,43(12):97-99. 被引量:32
  • 4Kennedy J,Eberhert R.Particle Swarm Optimization[C]∥Proc of IEEE International Conferenceon Neural Networks,1995:1942-1948.
  • 5Nie Chang-hai, Hareton Leung. A survey of combinatorial testing [J]. ACM Computing Survey,2011,43 (2) ,11 :1-11:2.
  • 6Kuhn D R,Reilly M J. An investigation of the applicability of design of experiments to software testing [ C ]. In Software Engineering Workshop,Proceedings. 27th Annual NASA Goddard ,2002 :91-95.
  • 7Ahmed B, Zamli K. The development of a particle swarm based op- timization strategy for pairwise testing [J]. Journal of Artificial In- telligence,2011,4(2) : 156-165.
  • 8Ahmed B S, Zarnli K Z. PSTG: A T-way strategy adopting particle swarm optimization [ C . In Mathematical/Analytical Modeling andComputer Simulation ,2010 : 1-5.
  • 9.Ahmed B S, Zamli K Z. A variable strength interaction test suites generation strategy using particle swarm optimization [ J]. Journal of Systems and Software, 2011,84 ( 12 ) : 2171-2185.
  • 10Ahmed B S, Zamli K Z, Lim C P. Application of particle swarm optimization to uniform and variable strength covering array con- struction [J ]. Applied Soft Computing,2012,12 (4) : 1330-1347.

共引文献50

同被引文献15

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部