期刊文献+

基于VGG网络的鲁棒目标跟踪算法 被引量:5

A robust target tracking algorithm based on VGG network
下载PDF
导出
摘要 针对传统目标跟踪算法中当目标被遮挡和受光照强度变化等多种因素干扰时,相关滤波器模板更新不准确,误差逐帧累积最终导致目标跟踪失败,提出了一种基于VGG网络的鲁棒目标跟踪算法。首先通过VGG网络对第1帧输入图像中的局部上下文区域提取平均特征图来建立相关滤波器模板;然后通过VGG网络对后续帧输入图像中的局部上下文区域提取平均特征图和仿射变换平均特征图;其次与核相关滤波跟踪算法相结合,自适应确定目标位置和最终目标位置;最后自适应更新最终平均特征图和最终相关滤波器模板。实验结果表明,本文算法在目标被遮挡和受光照强度变化等多种因素干扰时,仍具有较高的目标跟踪精度和较强的鲁棒性。 In the traditional target tracking algorithm,when the target is disturbed by various factors such as occlusion and light intensity changes,the correlation filter template updates incorrectly and the error accumulates frame by frame,eventually causing the target tracking failure.Therefore,this paper proposes a robust object tracking algorithm based on VGG network.Firstly,the VGG network is used to extract the average feature map of the local context area image to establish a correlation filter template in the first frame of the input image.Secondly,the VGG network is used to extract the average feature map and the affine transformation average feature map of the local context area image in the subsequent frame of the input image.Thirdly,combining the kernel correlation filter tracking algorithm,the target position and the final target position are adaptively determined.Finally,the algorithm adaptively updates the final average feature map and the final correlation filter template in the current frame of the input image.Experimental results show that the proposed algorithm still has high target tracking accuracy and robustness when the target is disturbed by various factors such as occlusion and light intensity changes.
作者 徐亮 张江 张晶 杨亚琦 XU Liang;ZHANG Jiang;ZHANG Jing;YANG Ya-qi(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500;Yunnan Xiaorun Technology Service Co.,Ltd.,Kunming 650500;Yunnan Key Laboratory of Artificial Intelligence,Kunming University of Science and Technology,Kunming 650500;Kunming Branch of the 705th Research Institute of China State ShipBuilding Co.,Ltd.,Kunming 650102;Yunnan Administration for Market Regulation,Kunming 650228,China)
出处 《计算机工程与科学》 CSCD 北大核心 2020年第8期1406-1413,共8页 Computer Engineering & Science
基金 云南省技术创新人才资助项目(2019HB113) 云南省“万人计划”产业技术领军人才资助项目(云发改人事[2019]1096号)。
关键词 目标跟踪 VGG网络 核相关滤波 特征图更新 模板更新 target tracking Visual Geometry Group(VGG)network kernel correlation filter feature map update template update
  • 相关文献

参考文献3

二级参考文献59

  • 1张宏志,张金换,岳卉,黄世霖.基于CamShift的目标跟踪算法[J].计算机工程与设计,2006,27(11):2012-2014. 被引量:57
  • 2王永忠,潘泉,赵春晖,程咏梅.一种对光照变化鲁棒的均值漂移跟踪方法[J].电子与信息学报,2007,29(10):2287-2291. 被引量:5
  • 3Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
  • 4Ross D A, Lim J, Lin R S, for robust visual tracking Yang M H. Incremental learning International Journal of Corn- purer Vision, 2008, 77(1-3): 125-141.
  • 5Zhang K H, Zhang L, Yang M H. Fast compressive track- ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015.
  • 6Kwon J, Lee K M. Visual tracking decomposition. In: Pro- ceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA, USA: IEEE, 2010. 1269-1276.
  • 7Kalal Z, Mikolajczyk K, Matas J. Tracking-learning- detection. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2012, 34(7): 1409-1422.
  • 8Zhou X Z, Lu Y, Lu J W, Zhou J. Abrupt motion tracking via intensively adaptive Markov chain Monte Carlo sam- piing. IEEE Transactions on Image Processing, 2012, 21(2): 789-801.
  • 9Zhou T F, Lu Y, Di H J. Nearest neighbor field driven stochastic sampling for abrupt motion tracking. In: Pro- ceedings of the 2014 International Conference on Multime- dia and Expo (ICME). Chengdu China: IEEE, 2014. 1-6.
  • 10Grabner H, Matas J, Van Gool L, Cattin P. Tracking the in- visible: learning where the object might be. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pat- tern Recognition (CVPR). San Francisco, CA, USA: IEEE, 2010. 1285-1292.

共引文献272

同被引文献52

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部