期刊文献+

基于样本熵和模式识别的脑电信号识别算法研究 被引量:8

An EEG signal recognition algorithm based on sample entropy and BP neural network
下载PDF
导出
摘要 脑-机接口BCI是一种实现人脑和外部设备通信的新兴技术。基于时频特性进行特征提取的传统方法无法体现EEG信号的非线性特征。为了进一步提高分类的准确率,首先采用小波阈值降噪的预处理方法提高了EEG信号的信噪比。然后结合非线性动力学的样本熵参数,对3种想象运动的脑电信号进行特征提取,保留了脑电信号的非线性特征。其中,运动想象MI脑电信号的研究一直都是BCI这一高速发展领域的重点目标。还研究了支持向量机、LVQ神经网络和BP神经网络3种分类器。通过实验结果对比发现,BP神经网络具有较高的识别率,更适用于脑电信号的分类识别。 Brain-Computer Interface(BCI)is an emerging technology for communication between human brain and external devices.The traditional feature extraction method based on time-frequency cha-racteristics cannot reflect the nonlinear characteristics of EEG signals.In order to further improve the accuracy of classification,the pretreatment method of wavelet threshold denoising is firstly used to improve the signal-to-noise ratio of EEG signals.Then,the feature extraction of the three kinds of imaginary motion EEG signals is carried out by the parameter-sample entropy of nonlinear dynamics,and the nonlinear features of EEG signals are preserved.Among them,the research of Motor-Imagery(MI)EEG has always been the focus of BCI that is a high-speed development field.This paper also studies three classifiers including support vector machine,LVQ neural network and BP neural network.The experimental results show that BP neural network has higher recognition rate for classification and recognition of EEG signals.
作者 沈晓燕 王雪梅 王燕 SHEN Xiao-yan;WANG Xue-mei;WANG Yan(School of Information Science and Technology,Nantong University,Nantong 226019;Collaborative Innovation Center for Nerve Regeneration,Nantong University,Nantong 226019,China)
出处 《计算机工程与科学》 CSCD 北大核心 2020年第8期1482-1488,共7页 Computer Engineering & Science
基金 国家自然科学基金重点项目(61534003) 国家自然科学基金面上项目(81371663) 江苏省“六大”人才高峰项目(SWYY-116) 南通市“226工程” 东南大学生物电子学国家重点实验室开放课题基金。
关键词 样本熵 特征提取 BP神经网络 模式识别 sample entropy feature extraction BP neural network pattern recognition
  • 相关文献

参考文献6

二级参考文献30

  • 1庄玮,段锁林,徐亭婷.基于SVM的4类运动想象的脑电信号分类方法[J].常州大学学报(自然科学版),2014,26(1):42-46. 被引量:5
  • 2江磊,江凡.基于小波神经网络的旋转机械故障诊断[J].汽轮机技术,2004,46(3):204-206. 被引量:7
  • 3HU X, WANG Z. Classification of Forearm Action Surface EMG Signals Based on Fractal Dimension [ J ] Journal of Southeast University ( EnglishEdition), 2005,21 ( 3 ) : 324 - 329.
  • 4Frigo C, Ferrarin M, Frasson W, et al. EMG Signals Detection and Processing for On-line Control of Functional Electrical Stimulation [ J ]. J Electromyogr Kinesiol, 2000, 10 (5) :351 -60.
  • 5DAUBECHIES 1. Orthonormal basis of compactly supported wavelets[J]. Comm in Pure and Applied Math, 2003,41 (7) :909 - 1005.
  • 6Dennis JM, Lynn MM, Stephen VD, et al. Spatial filter selection for EEG- based communication. Electroencephalography and clinical Neurphysiology, 1997, 103:386-394
  • 7Pregenzer M, Flotzinger D, Pfurtscheller G. Distinction sensitive learning vector quantisation- a new noise- insensitive classification method. IEEE World Congress on Computational Intelligence, 1994,5: 2890-2894
  • 8Kononen T. Self- organization and Associative Memory. 3rd ed. Berlin:Springer- Verlag,1989
  • 9Kohomen T. Improved versions of learning vector quantizations. Int Joint Conf Neural Networks, 1990, 545-550
  • 10Martin P and Gert P. Frequency component selection for an EEG- based brain to computer interface. IEEE transactions on rehabilitation engineering, 1999,7 (4): 413-419

共引文献14

同被引文献75

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部