期刊文献+

外涵空气燃油双工质换热器燃油管结构流动换热特性研究

Research on Flow and Heat Transfer Characteristics of Fuel Pipe Structure in a Bypass Air and Fuel Dual-fuild Heat Exchanger
下载PDF
导出
摘要 针对涡扇航空发动机外涵和引气的实际气动参数,以及燃油流量等参数,通过数值模拟研究了双工质换热器内燃油管数目、直径和截面形状对燃油和引气流动换热性能的影响。研究结果表明,在设定的参数范围内,增加燃油管数目能够在有效地提高整体换热效果的同时,降低燃油流动阻力;燃油管总流通截面积是影响燃油流动阻力的主要因素,当燃油管流通截面积相同,燃油管数目的变化不会影响燃油流动压降;燃油管流通截面积相同,管型对燃油流动压降影响很小,但就换热性能而言,跑道形管道换热效果最好,椭圆形管次之,圆形管最差。 A series of numerical simulations were performed to investigate the effects of main geometric parameters(including the number,diameter and cross-sectional shape of the fuel pipe)on flow and heat transfer performance of fuel and bleeding air for a specific bypass air and fuel dual-fluid heat exchanger,under representative bypass and bleeding flow conditions and fuel mass flow of an turbofan aeroengine.Among the current ranges of geometric parameters,it is found that increasing the number of fuel pipes can effectively improve the overall heat transfer effect and reduce the fuel flow resistance;the total cross-sectional area of the fuel pipe is the main factor affecting the fuel flow resistance.The flow crosssection area is the same,and the change in the number of fuel pipes will not affect the pressure drop of the fuel flow;when the flow crosssection area of the fuel pipe is the same,the tube shape has little effect on the fuel flow pressure drop.However,in terms of heat transfer performance,runway-type pipes have the best heat transfer effect,elliptical pipes take second place,and round pipes have the worst.
作者 雷熠 张靖周 LEI Yi;ZHANG Jingzhou(College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China)
出处 《机械与电子》 2020年第8期28-32,37,共6页 Machinery & Electronics
关键词 双工质换热器 温降 流动损失 数值模拟 dual-fluid heat exchanger temperature reduction flow loss numerical simulation
  • 相关文献

参考文献1

二级参考文献21

  • 1符全军,燕珂,杜宗罡,李宁.吸热型碳氢燃料研究进展[J].火箭推进,2005,31(5):32-36. 被引量:19
  • 2范学军,俞刚.大庆RP-3航空煤油热物性分析[J].推进技术,2006,27(2):187-192. 被引量:112
  • 3孙青梅,米镇涛,张香文.吸热型碳氢燃料RP-3仿JP-7临界性质(t_c、p_c)的测定[J].燃料化学学报,2006,34(4):466-470. 被引量:33
  • 4蒋劲,张若凌,乐嘉陵.超燃冲压发动机再生冷却热结构设计的计算工具[J].实验流体力学,2006,20(3):1-7. 被引量:9
  • 5郑力铭,孙冰.超燃冲压发动机二维热环境数值模拟[J].航空动力学报,2007,22(5):823-828. 被引量:5
  • 6Yang J, Oka Y, Ishiwatari Y, et al. Numerical investigation of heat transfer in upward flows of supercritieal water in circular tubes and tight fuel rod bundles [ J ]. Nuclear Engineering and Design, 2007, 237 ( 4 ) : 420 - 430.
  • 7Bazargan M, Fraser D, Chatoorgan V. Effect of buoyancy on heat transfer in supercritical water flow in a horizontal round tube [ J ]. Journal of Heat Transfer, 2005, 127 : 897 - 902.
  • 8Yamagata K, Nishlkawa K, Hasegawa S, et al. Forced convective heat transfer to supercritical water flowing in tubes[ J]. International Journal of Heat Mass Transfer, 1972. 15(12): 2575-2593.
  • 9Pioro I L, Duffey R B. Experimental heat transfer in supercritical carbon dioxide flowing inside channels (survey) [JJ. Nuclear Engineering and Design, 2005, 235 (8) : 913 -924.
  • 10Huai X L, Koyama S, Zhao T S. An experimental study of flow and heat transfer of supercritical carbon dioxide in multi-port mini channels under cooling conditions [ J ]. Chemical Engineering Science, 2005, 60( 12 ).

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部