期刊文献+

半透明玻璃管束吸热芯聚集太阳光传输特性分析 被引量:2

TRANSFERRING PERFORMANCES OF CONCENTRATED SUNLIGHT INSIDE QUARTZ GLASS PIPE BUNDLE ABSORBER
下载PDF
导出
摘要 为研究石英玻璃管束吸热芯对聚集太阳光的传输穿透性能,建立石英玻璃管束吸热芯多表面界面反射、折射和介质吸收光路传播模型。采用动态包覆面蒙特卡洛射线踪迹法(MCRTM)加速算法,模拟分析聚集太阳光束在石英玻璃管束吸热芯的传输过程,考虑玻璃光束倾斜角度、结构参数和聚集太阳光集中度等因素对聚集太阳光辐射传输性质的影响。结果表明石英玻璃管束吸热芯(长度5 cm,壁厚0.4 mm)对聚集太阳光的吸收比低于5%,是一种较为理想的低吸收换热芯材料,此结论为半透明玻璃管束吸热芯的创新发展提供了参考依据。 In order to investigate the transferring characteristics of concentrated sunlight inside the quartz glass pipe bundles,a ray transferring model was constructed involving the reflection,refraction and absorption behavior between multiple surfaces.The influences of the incline angles and the structure parameters of the pipe bundle,and the concentration ratio of the concentrated sunlight on the performances of the transferring performance was carried out by an accelerated Monte-Carlo ray-tracing method.Results show that the quartz glass pipe bundles are suitable as low-absorption unit locating in the front of the volumetric receiver since its absorptions of the incident sunlight is lower than 5%with 5 cm length and 0.4 cm thickness.Conclusions provide valuable reference to the development of the volumetric receiver.
作者 戴贵龙 夏雨婷 谢林毅 张慈枝 Dai Guilong;Xia Yuting;Xie Linyi;Zhang Cizhi(Key Laboratory of New Energy and Energy-saving in Building,Fujian Province University,Fujian University of Technology,Fuzhou 350118,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2020年第7期222-226,共5页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(51806037) 福建省自然科学基金(2017J01674) 校科研发展基金(GY-Z15103)。
关键词 太阳辐射能 吸热器 光学透过比 吸收比 数值模拟 solar radiation solar absorbers optical transmittance absorption numerical simulation
  • 相关文献

参考文献4

二级参考文献22

  • 1李瑞恒,邢玉明,刘伟.空间太阳能热动力发电系统10kW聚能器焦平面热流分布计算[J].太阳能学报,2005,26(1):116-120. 被引量:11
  • 2杜胜华,夏新林,唐尧.太阳光不平行度对太阳能聚集性能影响的数值研究[J].太阳能学报,2006,27(4):388-393. 被引量:28
  • 3邱国俭.[D].中国科学技术大学,1998.5:44.
  • 4Karni J, Kribus A, Ostraich B, et al. A High-Pressure Window for Volumetric Solar Receivers [J]. Journal of Solar Energy Engineering, 1998(120): 101-107.
  • 5Kribus A, Doron P, Rubin R, et al. A Multistage Solar Receiver-the Route to High Temperature [J]. Solar Energy, 1999 (67): 3-11.
  • 6Ruoger M, Buck R, Muller-Steinhagen H. Numerical and Experimental Investigation of a Multiple Air Jet Cooling System for Application in a Solar Thermal Receiver [J]. Journal of Heat Transfer, 2005(127): 863-876.
  • 7Roeb M, Christian S, Kliiser R, et al. Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides [J]. Journal of Solar Energy Engineering, 2006(128): 125 -133.
  • 8Palero S, Romero M, Castilo J L. Comparison of Experimental and Numerical Air Temperature Distributions Behind a Cylindrical Volumetric Solar Absorber Module [J]. Journal of Solar Energy Engineering, 2008(130): 1-8.
  • 9ZHAO C Y, LU T J, Hodson H P. Thermal Radiation in Ultralight Metal Foams With Open Cells [J]. International Journal of Heat and Mass Transfer. 2004(47): 2927-2939.
  • 10HOLLANDS K G T. Coupled radiative and conductive heat transfer across-honeycomb panels and through ssingle cells[J]. Int J Heat Mass Transfer, 1984,27 (11) :2119--2131.

共引文献22

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部