期刊文献+

泡状隔板对涡轮叶片内冷通道换热和流阻的影响 被引量:2

Effect of Bubbled-Shaped Divider Wall in Turbine Blade on Heat Transfer and Pressure Drop
下载PDF
导出
摘要 为增强涡轮叶片内部通道的换热、减小流动阻力,提出了一种新型的泡状隔板结构。通过实验与数值模拟相结合的方法,研究了等热流边界条件下泡状隔板结构的半径以及形状对通道换热和流阻特性的影响,并与直隔板进行对比,实验结果表明:在研究范围内,对称型泡状隔板结构能够大大减小通道流动阻力,随着泡状结构半径的增大,减阻效果增强;不对称型泡状隔板结构只在半径最大时能减小流动阻力;泡状结构对于换热的影响并不明显。实验结论可以为涡轮叶片内部冷却通道的优化设计提供理论依据。 In order to enhance the heat transfer inside the turbine blade and reduce the pressure drop of the channel,a new bubble-shaped divider wall was proposed.An experimental study and numerical simulation was performed to obtain heat transfer and pressure drop characteristics of the channel with different radius and shape of the bubble configuration and typical traditional configuration.Isothermal boundary condition was used.With the scope of the study,it was found that the symmetrical bubble-shaped divider wall can greatly reduce the pressure drop of the channel.As the radius increases,the reduction effect became more obvious.Asymmetric divider wall reduced pressure drop only at maximum radius.The effect of bubble structure on heat transfer was not obvious.The experimental conclusion can provide a theoretical basis for the optimal design of the internal cooling channel of the turbine engine.
作者 贺宜红 陈燕 陈文彬 杨卫华 HE Yihong;CHEN Yan;CHEN Wenbin;YANG Weihua(AECC Hunan Aviation Powerplant Research Institute,Zhuzhou,412000,China;College of Energy and Power Engineering,Nanjing University of Aeronautics&Astronautics,Nanjing,210016,China)
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第4期559-571,共13页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 涡轮叶片 隔板 流阻 对流换热系数 turbine blade divider wall pressure drop convective heat transfer coefficient
  • 相关文献

参考文献3

二级参考文献16

  • 1李莉,丁水汀,陶智,徐国强,赵世红.涡轮叶片尾缘复合通道的换热[J].北京航空航天大学学报,2005,31(2):202-205. 被引量:7
  • 2丁水汀,刘丽艳,李莉.涡轮叶片尾缘复合通道隔板结构[J].北京航空航天大学学报,2006,32(3):276-279. 被引量:5
  • 3丁水汀,刘丽艳,李莉,陶智,徐国强.涡轮叶片尾缘复合通道中隔板结构对换热特性的影响[J].航空动力学报,2006,21(3):523-527. 被引量:10
  • 4Fabbri G. Heat transfer optimization in corrugated wall channels [J]. International Journal of Heat and Mass Transfer,2000,43(23) :4299- 4310.
  • 5Rush T A, Newell T A,Jaeobi A M. An experimental study of flow and heat transfer in sinusoidal wavy passages[J]. International Journal of H eat and Mass Transfer, 1999, 42(9) : 1541-1553.
  • 6IslamogluY, Parmaksizoglu C. Numerical investigation of convective heat transfer and pressure drop in a corrugated heat exchanger channel[J].Applied Thermal Engineering, 2004,24(1):141-147.
  • 7Nishimura T, Oka N, Yoshinaka Y, et al. Influence of imposed oscillatory frequency on mass transfer enhancement of grooved channels for pulsatile flow[J]. International Journal of Heat and Mass Transfer,2000,43(13) :2365 -2374.
  • 8Guzman A M,Cdrdenas M J,Urzua F A,et al. Heat trans- fer enhancement by flow bifurcations in asymmetric wavy wall channels[J].International Journal of Heat and Mass Transfer,2009,52(15 16) :3778 -3789.
  • 9Chang S W,Lees A W,Chou T C. Heat transfer and pres- sure drop in furrowed channels with transverse and skewed sinusoidal wavy walls[J]. International Journal of Heat and Mass Transfer, 2009,52 (19-20) : 4592-4603.
  • 10Ko T H, Cheng C S. Numerical investigation on developing laminar forced convection and entropy generation in a wavy channel[J].International Communications in Heat and Mass Transfer,2007,34(8) :924-933.

共引文献12

同被引文献20

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部