期刊文献+

基于状态监测数据的航空发动机剩余寿命在线预测 被引量:8

Online Remaining Useful Lifetime Prediction for Aero-Engine Based on Condition Monitoring Data
下载PDF
导出
摘要 针对现有基于状态监测数据的航空发动机剩余寿命预测研究未能综合考虑隐含退化建模和同步更新漂移/扩散系数的问题,提出一种基于状态监测数据的航空发动机剩余寿命在线预测方法。首先,基于非线性Wiener过程构建带比例关系的航空发动机隐含退化模型;其次,基于多台同类发动机的历史状态监测数据,对退化模型参数进行离线估计;然后,基于目标发动机的实时状态检测数据,利用贝叶斯原理同步更新退化模型漂移/扩散系数;最后,推导出航空发动机的剩余寿命概率密度函数。结合实例分析,验证了本文所提方法较传统方法具有更高的预测准确性与精度,具备潜在工程应用前景。 For the problem of remaining useful lifetime(RUL)prediction of aero-engine,the present methods have not comprehensively considered the hidden degradation modeling and drift/diffusion coefficient synchronous updating.An online RUL prediction for aero-engine based on the condition monitoring(CM)data is presented in this paper.Firstly,the proportional degradation model of aero-engine is established based on the nonlinear Wiener process.Secondly,based on the historical condition monitoring data of similar engines,the degradation model parameters are estimated offline by using the maximum likelihood estimation(MLE)method.And then,based on the real-time condition monitoring data of the target engine,the drift/diffusion coefficient are synchronously update by using the Bayesian principle.Finally,the RUL probability density function of aero-engine is derived.The example analysis shows that the proposed method has higher prediction accuracy and precision than the traditional one,and has potential engineering application prospects.
作者 李航 张洋铭 LI Hang;ZHANG Yangming(Equipment Management&UAV Engineering College,Air Force Engineering University,Xi’an,710051,China;Beijing Institute of System Engineering,Beijing,100020,China)
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第4期572-579,共8页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 状态监测 航空发动机 剩余寿命预测 WIENER过程 隐含退化建模 condition monitoring aero-engine remaining useful lifetime prediction Wiener process hidden degradation modeling
  • 相关文献

参考文献2

二级参考文献48

  • 1姜同敏,王晓红,等.可靠性试验技术[M].北京:北京航空航天大学出版社,2012.
  • 2.IARDINE A K S, LIN D, BANJEVIC D. A review on machineD, diagnostics and prognostics implementing condition-based maintenance [J]. Mechanical systems and signal processing, 2006, 20(7): 1483-1510.
  • 3SUN B, ZENG S K, KANG R, PECHT M G. Benefits and challenges of system prognostics [J]. IEEE Transactions on Reliability, 2012, 61(2): 323-334.
  • 4ZIO E, COMPARE M. Evaluating maintenance policies by quantitative modeling and analysis [J]. Reliability Engineering & System Safety, 2013, 109: 53-65.
  • 5SI Xiao-sheng, WANG Wen-bin, HU Chang-hua, ZHOU Dong-hua. Remaining useful life estimation A review on the statistical data driven approaches [J]. European Journal of Operational Research, 2011,213(1): 1-14.
  • 6GEBRAEEL N Z, LAWLEY M A, LI RONG, RYAN J K. Residual-/ife distributions from component degradation signals: A Bayesian approach [J]. lie Transactions, 2005, 37(6): 543-557.
  • 7GEBRAEEL N Z. Sensory-updated residual Life distributions for components with exponential degradation patterns [J]. IEEE Transactions on Automation Science and Engineering, 2006, 3: 382- 393.
  • 8KAISER K A, GEBRAEEL N Z. Predictive maintenance management using sensor-based degradation models [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2009, 39(4): 840-849.
  • 9PENG C Y, TSENG S T. Mis-specification analysis of linear degradation models [J]. IEEE Transactions on Reliability, 2009, 58(3): 444-455.
  • 10PENG C Y, TSENG S T. Statistical lifetime inference with Skew-Wiener linear degradation models [J]. IEEE Transactions on Reliability, 2013, 63(2): 338-350.

共引文献29

同被引文献99

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部