摘要
利用ICEM CFD创建相变蓄热水箱物理模型并进行网格化,基于Fluent特有的Solidification/Melting模型,仿真一种基于球型封装的相变储热水箱在初始温度35℃、入口流速0.11 m/s、入口温度98℃工况下的蓄热过程,得到了相变储热过程中的温度与液相率曲线,研究3种不同物理模型的储热性能并分析了相变过程中的储热形式,得出了在同等储热量下,具有3种不同大小(直径分别为50、65和80 mm)蓄能球的水箱储热时间分别为2220、2750、3540 s。具有50和65 mm相变储热球的水箱比具有80 mm储热球的水箱整体储热时间分别减少1320和790 s,整体模型的储热效率分别提升了37%和22%。因此在实际应用过程中,合理选择蓄能球直径可有效提升蓄热效率。
The physical model of phase change heat storage tank was established by using ICEM CFD and gridded.Based on Fluent s unique Solidification/Melting model,the heat storage process of a phase change heat storage tank based on spherical packaging was simulated under the conditions of initial temperature 35℃,inlet flow rate 0.11 m/s and inlet temperature 98℃.The temperature and liquid phase rate curves in the process of phase change heat storage were obtained.The heat storage properties of three different physical models were studied and the forms of heat storage in the process of phase transition were analyzed.It is concluded that under the same heat storage,the heat storage time of the water tank with three different sizes(50,65 and 80 mm respectively)is 2220,2750 and 3540 s.The overall heat storage time of the water tank with 50 and 65 mm phase change heat storage sphere is 1320 and 790 s less than that of the water tank with 80 mm heat storage ball respectively,and the heat storage efficiency of the overall model is increased by 37%and 22%respectively.It is obtained that in the process of practical application,the reasonable selection of the diameter of the energy storage ball can effectively improve the heat storage efficiency.
作者
谭心
程西送
虞启辉
方桂花
赵琛
TAN Xin;CHENG Xisong;YU Qihui;FANG Guihua;ZHAO Chen(School of Mechanical Engineering,Inner Mongolia University of Science and Technology,Baotou Inner Mongolia 014010,China;CSSC Nanjing Luzhou Machine Company,Nanjing Jiangsu 210000,China)
出处
《机床与液压》
北大核心
2020年第16期121-125,共5页
Machine Tool & Hydraulics
基金
内蒙古自治区科技创新引导基金(2017CXYD-2,KCBJ2018031)
国家自然科学基金地区科学基金项目(61765012)
内蒙古自然科学基金(2019MS05008)。
关键词
蓄能球
相变材料
蓄热效率
数值模拟
Heat storage ball
Phase change material
Heat storage efficiency
Numerical simulation