期刊文献+

卷积神经网络的优化在车牌号识别上的运用 被引量:2

Optimization of Convolutional Neural Network for License Plate Recognition
下载PDF
导出
摘要 通过与传统神经网络对比,分析了利用卷积神经网络(CNN)进行车牌号图像识别中的特征提取过程,提出了优化卷积和池化的过程来提高算法的收敛速度和准确率。运用PyCharm环境建立了改进后的车牌号识别模型,并通过实验验证了其正确性与识别速度。通过BP神经网络、传统LeNet 5 CNN和改进后的CNN对相同的字符集进行对比分析实验,得出了改进后的CNN模型的优势。 Compared with the traditional neural network,this paper analyzes the feature extraction process in image recognition of autombile plate number using convolutional neural network,and proposes the process of optimizing convolution and pooling to improve the convergence speed and accuracy of the algorithm.The improved license plate recognition model is established in PyCharm environment,and its correctness and recognition speed are verified.By comparing the same character set with BP neural network,conventional LeNet 5 CNN and the modified convolution neural network,the advantages of the proposed model are obtained.
作者 刘永雪 李海明 LIU Yongxue;LI Haiming(School of Computer Science and Technology,Shanghai University of Electric Power,Shanghai 200090,China)
出处 《上海电力大学学报》 CAS 2020年第4期351-356,共6页 Journal of Shanghai University of Electric Power
关键词 车牌号识别 卷积神经网络 特征提取 池化 模型 license plate recognition convolutional neural network feature extraction pooling model
  • 相关文献

参考文献8

二级参考文献150

  • 1Zilly F, Kluger J, Kauff P. Production rules for stereo acquisition[J]. Proceedings of the IEEE, 2011, 99(4): 590-606.
  • 2Urey H, Chellappan K V, Erden E, et al. State of the art in stereoscopicand autostereoscoic displays[J]. Proceedings of theIEEE, 2011, 99(4): 540-555.
  • 3You J Y, Xing L, Perkis A, et al. Perceptual quality assessmentfor stereoscopic images based on 2D image quality metrics anddisparity analysis[OL]. [2015-06-21]. http://events.engineering.asu.edu/vpqm/vpqm10/Proceedings_VPQM2010/vpqm_p09.pdf.
  • 4Benoit A, Le Callet P, Campisi P, et al. Using disparity forquality assessment of stereoscopic images[C] //Proceedings ofthe 15th IEEE International Conference on Image Processing.Los Alamitos: IEEE Computer Society Press, 2008: 389-392.
  • 5Bensalma R, Larabi M C. A perceptual metric for stereoscopicimage quality assessment based on the binocular energy[J].Multidimensional Systems and Signal Processing, 2013, 24(2):281-316.
  • 6Moorthy A K, Bovik A C. Blind image quality assessment:from natural scene statistics to perceptual quality[J]. IEEETransactions on Image Processing, 2011, 20(12): 3350-3364.
  • 7Saad M A, Bovik A C, Charrier C. Blind image quality assessment:a natural scene statistics approach in the DCT domain[J].IEEE Transactions on Image Processing, 2012, 21(8): 3339-3352.
  • 8Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on ImageProcessing, 2012, 21(12): 4695-4708.
  • 9Hinton G E, Osindero S, Teh Y W. A fast learning algorithm fordeep belief nets[J]. Neural computation, 2006, 18(7): 1527-1554.
  • 10Salakhutdinov R, Hinton G. Deep Boltzmann machines[J].Journal of Machine Learning Research-Proceedings Track,2009, 9(1): 448-455.

共引文献1114

同被引文献12

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部