期刊文献+

基于DDQN的运载火箭姿态控制器参数设计 被引量:6

Parameter Design of Rocket Attitude Controller Based on DDQN
下载PDF
导出
摘要 探索了利用深度强化学习算法训练智能体,以代替人类工程师进行火箭姿态控制器参数的离线设计方案。建立了多特征秒的火箭频域分析模型,选定了设计参数。选择深度强化学习算法中的双深度Q学习(Double Deep Q Network,DDQN)算法,通过记忆回放和时间差分迭代的方式让智能体在与环境交互过程中不断学习。设计了对应的马尔科夫决策过程模型,进行了智能体的训练和前向测试。结果说明该方法对于运载火箭姿控设计具有一定参考价值。 In this paper,the off-line design scheme of rocket attitude controller parameters using deep reinforcement learning algorithm to train an agent instead of human engineers is studied. Firstly,a multicharacteristic-second rocket frequency domain analysis model is established and the design parameters are selected. Then,the double deep Q network( DDQN) algorithm is selected as the training algorithm. The agent is allowed to continuously learn during the interaction with the environment through memory playback and time differential iteration in this algorithm. Meanwhile,the Markov decision process of the problem is designed,and the agent training and testing are implemented. The results show that the method has certain reference value for the attitude control design of the rocket.
作者 黄旭 柳嘉润 骆无意 Huang Xu;Liu Jiarun;Luo Wuyi(Beijing Aerospace Automatic Control Institution,Beijing 100854,China;National Key Laboratory of Science and Technology on Aerospace Intelligent Control,Beijing 100854,China)
出处 《航天控制》 CSCD 北大核心 2020年第4期3-8,共6页 Aerospace Control
关键词 深度强化学习 姿态控制器 频域分析 参数设计 Deep reinforcement learning Attitude controller Frequency-domain analysis Parameter design
  • 相关文献

参考文献2

二级参考文献17

共引文献22

同被引文献84

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部