期刊文献+

融合信任度值与半监督密度峰值聚类的改进协同过滤推荐算法 被引量:15

Collaborative Filtering Recommendation Algorithm Combining Trust Value and Semi-supervised Density Peak Clustering
下载PDF
导出
摘要 协同过滤推荐算法是个性化推荐系统中研究最多且应用最广的推荐算法之一,针对传统的协同过滤推荐算法中存在的数据稀疏性问题,导致算法的推荐精度不准确和推荐效率低等现象,本文提出了一种融合信任度值与半监督密度峰值聚类的改进协同过滤推荐算法.该算法有以下三个方面改进:1)通过半监督密度峰值聚类,将相似性用户进行聚类,降低目标用户的相似度计算时间;2)加入信任权值,精确地计算用户之间的直接信任度值;3)引入等效电阻式的间接信任度值的计算方式,充分挖掘用户之间的隐式信任信息.本文在进行相关的理论分析,并在不同数据集上进行了相应的实验验证,均表明了本文算法的有效性. Collaborative filtering recommendation algorithm is one of the most researched and widely used recommendation algorithms in personalized recommendation systems.Aiming at the problem of data sparsity in traditional collaborative filtering recommendation algorithms,it leads to inaccurate recommendation accuracy and low recommendation efficiency.This paper proposes an improved collaborative filtering recommendation algorithm that combines trust values and semi-supervised density peak clustering.The algorithm has the following three improvements:1)clustering similar users through semi-supervised density peak clustering to reduce the similarity calculation time of the target user;2)adding trust weights to accurately calculate the user weight The direct trust value between the users;3)Introducing the calculation method of the equivalent resistance indirect trust value to fully mine the implicit trust information between users.In this paper,the relevant theoretical analysis is carried out,and corresponding experimental verification is performed on different data sets,which all show the effectiveness of the algorithm.
作者 李昆仑 王萌萌 于志波 翟利娜 LI Kun-lun;WANG Meng-meng;YU Zhi-bo;ZHAI Li-na(Electronic Information Engineering College,Hebei Unversity,Baoding 071000,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2020年第8期1613-1619,共7页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61672205)资助。
关键词 协同过滤 半监督密度峰值聚类 直接信任 间接信任 collaborative filtering semi-supervision density peak clustering direct trust indirect trust
  • 相关文献

参考文献6

二级参考文献52

  • 1Olivier C, Bernhard S, Alexander Z. Semi-Supervised Learning. Cambridge, USA : MIT Press, 2006 : 3 - 10.
  • 2Blum A, Mitchell T. Combining Labeled and Unlabeled Data with Co-Training//Proe of the 11th Annual Conference on Computational Learning Theory. Madison, USA, 1998 : 92 - 100.
  • 3Zhong Shi. Semi-Supervised Model-Based Document Clustering: A Comparative Study. Machine Learning, 2006, 65 ( 1 ) : 3 - 29.
  • 4Wagstaff K, Cardie C, Rogers S, et al. Constrained K-means Clustering with Background Knowledge // Proc of 18th International Conference on Machine Learning. San Francisco, USA, 2001:577 -584.
  • 5Wagstaff K, Cardie C. Clustering with Instance-Level Constraints// Proc of the 17th International Conference on Machine Learning. SanFrancisco, USA, 2000:1103 - 1110.
  • 6Huang Desheng, Pan Wei. Incorporating Biological Knowledge into Distance-Based Clustering Analysis of Micro Array Gene Expression Data. Bioinformatics, 2006, 22 (10) : 1259 - 1268.
  • 7Tari L, Baral C, Kim S. Fuzzy C-Means Clustering with Prior Biological Knowledge. Journal of Biomedical Informatics, 2009, 42 (1): 74-81.
  • 8Ceccarelli M, Maratea A. Improving Fuzzy Clustering of Biological Data by Metric Learning with Side Information. International Journal of Approximate Reasoning, 2008, 47 ( 1 ) : 45 - 57.
  • 9Huang Ruizhang, Lam W. An Active Learning Framework for Semi Supervised Document Clustering with Language Modeling. Data & Knowledge Engineering, 2008, 68 ( 1 ) : 49 - 67.
  • 10Erman J, Mahanti A, Arlitt M, et al. Offline/Realtime Traffic Classification Using Semi-Supervised Learning. Performance Evaluation, 2007, 64(9/10/11/12): 1194- 1213.

共引文献133

同被引文献142

引证文献15

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部