摘要
页岩气井压裂过程中出现的套管变形问题已经成为制约我国页岩气高效开发的重要因素。在页岩气水平井固井时常出现套管偏心现象,且页岩气井压裂改造次数多、井下温度场变化大,套管承受复杂的交变载荷。基于此建立套管偏心情况下的力-热耦合模型,分析了注液温度、压力、排量等因素对套管应力的影响。计算结果表明:压裂过程中,套管温度先迅速降低,然后逐渐稳定;套管内壁最大应力随偏心角的增大而增大;注液温度越低,井底温度下降越快,导致套管最大应力增大;在力-热耦合条件下,套管内壁的最大应力随着压力的增大而增大;排量增加,传热系数增大,套管最大应力也随之增大。
The casing deformation problem in shale gas wells has become an important factor that restricts the efficient development of shale gas.In the shale gas reservoir,casing eccentricity often occurs during casing cementing.In addition,the fracturing time is longer,and the downhole temperature field changes greatly during later reservoir reconstruction.Therefore,this paper establishes casing eccentric thermal-mechanical coupling model,and analyzes the effects of injection temperature,internal pressure and displacement on the instantaneous stress of casing.Results indicate that the casing temperature decreases rapidly to nearly constant temperature during fracturing.The maximum stress of the inner wall of the casing increases with the increase of the eccentricity angle.The lower the injection temperature,the faster the bottom hole temperature decreases,resulting in an increase in the maximum casing stress.Under thermal-mechanical coupling conditions,the maximum stress on the inner wall of the casing increases with pressure increasing.The heat transfer coefficient increases with the increase of displacement,and then the maximum stress of the casing also increases.
作者
张慧
李军
韩葛伟
张鑫
张小军
ZHANG Hui;LI Jun;HAN Gewei;ZHANG Xin;ZHANG Xiaojun(China University of Petroleum-Beijing,Beijing 102249,China;China University of Petroleum-Beijing at Karamay,Karamay,Xinjiang 834000,China;Bohai Drilling Engineering Company Limited,Renqiu,Hebei 062552,China)
出处
《石油管材与仪器》
2020年第4期73-76,81,共5页
Petroleum Tubular Goods & Instruments
基金
国家自然科学基金联合基金重点项目“页岩气水平井井筒完整性失效机理与控制方法”(项目编号:U1762211)
国家自然科学基金-企业创新发展联合基金课题“海相深层油气富集机理与关键工程技术基础研究-构造应力集中区页岩气井套管载荷模型及结构完整性失效机理”(项目编号:U19B6003-05-04-02)
中石化工程公司项目“威荣区块深层页岩气井筒完整性关键技术研究”(项目编号:SG18-29K)。
关键词
页岩气
套管变形
有限元
套管偏心
力-热耦合
shale gas
casing deformation
finite element
casing eccentricity
thermal-mechanical coupling