期刊文献+

客户购买行为建模分析预测 被引量:1

Customer Purchase Behavior Modeling, Analysis and Prediction
下载PDF
导出
摘要 基于阿里巴巴天池大数据比赛的真实客户购买记录数据,通过分析客户以往的购买记录,预测未来客户对哪些商品会有行为。采用先召回部分商品、再进行模型预测排序的策略来提高预测效率。在召回过程中,对传统的根据商品类别召回商品的方法加以改进,加入对用户行为时间顺序的考虑,排序过程中采用XGBoost、LightGBM、CatBoost等boosting算法进行排序,从而有效预测未来用户会对哪些商品有所行为。 Based on the real customer purchase record data of Alibaba Tianchi big data competition and analyzing the customer’s previous purchase records,we can predict which items that customers will act in the future.In order to improve the prediction efficiency,the strategy which re⁃calls some items first and then ranks items by model is adopted.In the process of recalling,this paper improves the traditional method of re⁃calling items according to category by considering the time sequence of customer behavior.In the process of ranking,this paper uses some boosting algorithms like XGBoost,LightGBM,CatBoost to rank so as to predict which items that customer will act in the future.
作者 朱珏樟 ZHU Jue-zhang(Computer Department,Zhejiang University City College,Hangzhou 310000)
出处 《现代计算机》 2020年第21期27-32,共6页 Modern Computer
关键词 客户行为预测 机器学习 XGBoost LightGBM CatBoost Customer Behavior Prediction Machine Learning XGBoost LightGBM CatBoost
  • 相关文献

参考文献3

二级参考文献18

共引文献16

同被引文献16

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部