期刊文献+

基于深度学习的移动端语音识别系统设计 被引量:10

Mobile Speech Recognition System Design Based on Deep Learning
下载PDF
导出
摘要 随着深度学习技术研究的深入,语音识别同样已经完成了从传统模型到深度学习的过渡,本文主要实现移动端离线状态下的语音识别并提高语音识别的精度。文中采用深度学习的方式,将在电脑上训练好的模型移植到树莓派3b+上进行语音识别操作。项目整体结构可以分为声学模型及语言模型两个部分,同语音识别中其他主流模型进行对比测试后,得到的结论是声学模型DFCNN和语言模型Transformer的编码器部分都适合移植于嵌入式端,在成本远低于市场上既有语音识别产品的情况下,识别效果和速度都非常接近。 With the research progress of deep learning technology,speech recognition has also completed the transition from traditional model to deep learning.The main purpose of this paper is to solve the speech recognition under the mobile offline state and improve the accuracy of speech recognition.In the paper,the method of deep learning is used to transplant the model trained on the computer to the Raspberry Pi 3b+for speech recognition.The overall structure of the project can be divided into two parts:acoustic model and language model.Comparing with other mainstream models in speech recognition,the conclusion is that the encoder part of the acoustic model DFCNN and the language model Transformer are suitable for transplantation on the embedded end.The recognition effect and speed are very close when the cost is much lower than that of the existing speech recognition products on the market.
作者 谭磊 余欣洋 罗伟洋 曾维 代云强 Tan Lei;Yu Xinyang;Luo Weiyang;Zeng Wei;Dai Yunqiang(College of Information Science and Technology,Chengdu University of Technology,Chengdu 610059,China)
出处 《单片机与嵌入式系统应用》 2020年第9期28-31,35,共5页 Microcontrollers & Embedded Systems
基金 基于图像识别的主动式显示器支架(S201910616036) 一种应用于公共交通领域的人包联动管理系统(S201910616037) 基于WSN的楼宇灾难应急疏散系统(S201910616133)。
关键词 深度学习 嵌入式系统 语音识别 声学模型 语言模型 deep learning embedded system speech recognition acoustic model language model
  • 相关文献

参考文献3

二级参考文献32

  • 1LE H P, HOT V. A maximum entropy approach to sentence boundary detection of Vietnamese texts [ C ]//IEEE International Conference on Research, Innovation and Vision for the Future-RIVF 2008. New York: IEEE, 2008 : 1-6.
  • 2HUYIN N T M, ROUSSANALY A, VINH H T. A hybrid approach to word segmentation of Vietnamese texts[J]. Language and Automata Theory and Applications, 2008:240-249.
  • 3越南语词法分析系统[EB/OL].[2014-11-12].http://www.10ria.fr/-lehong/tools/vn-Tokenizer.php.
  • 4BROWN P F, P1ETRA V J D, PIETRA S A D, et al. The mathematics of statistical machine translation:parameter estimation [ J ]. Computational Linguistics, 1993, 19 (2) : 263-311.
  • 5Franz Josef Och, Hermann Ney. A systematic comparison of various statistical alignment models [ J ]. Computational Linguis- tics, 2003, 29(1):19-51.
  • 6BLUNSOM P, COHN T. Discriminative word alignment with conditional random fields [ C ]//Proceedings of the 21 st Interna- tional Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics. Philadelphia:Association for Computational Linguistics, 2006:65-72.
  • 7LIU Y, LIU Q, LIN S. Discriminative word alignment by linear modeling [ J ]. Computational Linguistics, 2010, 36 (3) :303- 339.
  • 8HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[ J]. Neural Computation, 2006, 18 (7) : 1527-1554.
  • 9COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch [ J]. The Journal of Machine Learning Research, 2011, 12:2493-2537.
  • 10NIEHUES J, WAIBEL A. Continuous space language models using restricted boltzmann machines [ C ]//Proceedings of the 9th International Workshop on Spoken Language Translation (IWSLT). [ S. 1. ] :[ s. n. ], 2012:1-48.

共引文献7

同被引文献86

引证文献10

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部