期刊文献+

基于贝叶斯网的舰艇防空威胁评估 被引量:12

Threat Assessment for Warship Air Defense Based on Bayesian Network
原文传递
导出
摘要 现有威胁评估模型的参数大多由专家直接给出,很难应对不确定的对抗场景,以舰艇防空为背景,探讨如何建立适应能力更强的评估模型。首先通过领域专家构建一个舰艇防空威胁评估的静态BN模型;接着加入时间变量,将威胁评估BN扩展为DBN模型;然后结合专家约束,用约束最大后验概率估计算法学习网络参数;最后,通过推理威胁评估的结果来验证模型的有效性以及对不确定对抗场景的适应能力。该建立模型的流程具有更好的普适性,能很好地处理不确定对抗场景下的威胁评估任务。 Most of the parameters of the existing threat assessment model are directly given by experts,and it is difficult to deal with uncertain confrontation scenarios.In this paper,the ship’s air defense is used as a background to discuss how to build a more adaptive assessment model.First,construct a static BN model of the ship’s air defense threat assessment by domain experts;then add the time variable to expand the threat assessment BN to the DBN model;then combine the expert constraints and learn the network parameters with the constrained maximum posterior probability estimation algorithm.The results of threat assessment verify the effectiveness of the model and its ability to adapt to uncertain confrontation scenarios.The model building process has better universality and can handle threat assessment tasks in uncertain confrontation scenarios well.
作者 高晓光 杨宇 Gao Xiaoguang;Yang Yu(School of electronics and information,Northwestern Polytechnic University,Xi’an 710072,China;Southwest China Institute of Electronic Technology,Chengdu 610030,China)
出处 《战术导弹技术》 北大核心 2020年第4期47-57,70,共12页 Tactical Missile Technology
基金 国家自然科学基金(61573285)。
关键词 贝叶斯网 动态贝叶斯网 参数学习 威胁评估 Bayesian network dynamic Bayesian network parameter learning threat assessment
  • 相关文献

参考文献7

二级参考文献49

  • 1武传玉,刘付显.基于模糊评判的新防空威胁评估模型[J].系统工程与电子技术,2004,26(8):1069-1071. 被引量:20
  • 2冯卉,邢清华,宋乃华.一种基于区间数的空中目标威胁评估技术[J].系统工程与电子技术,2006,28(8):1201-1203. 被引量:35
  • 3Howard R,Matheson J E.Readings on theprinciples and applications of decision analysis[R].Menlo Park:Strategic Decisions Group,1984:721-762.
  • 4Pearl J.Causality[M].Cambridge:Cambridge University Press,200().
  • 5Chang K C,Fung R.Symbolic probab ilistic inference with both discrete and continuous variables[J].IEEE Trans.on Systems,Man and Cybernetics,1995,25(6):910-916.
  • 6Morellas V,Pavlidis I,Tsiamyrtzis P.Detection of events for threat evaluation and recognition[J].Association for Computing Machinery,2003,10:29-45.
  • 7Steinberg A N.Threat assessment technology development[J].Lecture Notes in Computer Science,2005,3554:490-500.
  • 8Macfarlane A M.Assessing the threat[J].Technology Review,2006,109(1):34-40.
  • 9Liang Y W.Fuzzy knowledge based approach in threat assessment[J].Journal of Information and Computational Science,2007,4(2):587-596.
  • 10Liang Q L.Knowledge-based ubiqui-tous and persistent sensor networks for threat assessment[J].IEEE Trans.on Aerospace and Electronic Systems,2008,44(3):1060-1069.

共引文献78

同被引文献140

引证文献12

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部