期刊文献+

纳米金电催化还原CO2的载体效应 被引量:5

Support Effect of Nano-gold Electrocatalytic Reduction of CO
下载PDF
导出
摘要 通过化学还原法制备得到了不同载体(碳纳米管(CNT)、炭黑(CB)、石墨碳(GC)、介孔碳(MC))负载的纳米Au催化剂,研究了载体对纳米Au电催化还原CO2的影响。Au/CNT和Au/CB催化剂的载体具有较大比表面积,分别为90.1、81.5 m2/g,并且载体与纳米Au之间具有强结合能。4种催化剂电催化还原CO2的性能结果显示,Au/CB催化剂具有更好的稳定性,28 h的稳定性测试中,CO的法拉第效率(FE)仅下降5%;Au/CNT催化剂的催化活性和选择性最高,起始电压仅为-0.4 V,且此时还原产物CO的法拉第效率约为100%。相比较之下,Au/GC和Au/MC催化剂上CO2反应活性低和选择性差,在稳定性测试中对CO的选择性都降为0。 Nano Au catalysts supported on carbon nanotubes(CNT),carbon black(CB),graphite carbon(GC)and mesoporous carbon(MC)were prepared by chemical reduction method.The effect of the support on the nano-Au electrocatalytic reduction of CO2 was explored.The supports of Au/CNT and Au/CB catalysts have large specific surface areas of 90.1,81.5 m2/g,respectively,with strong binding energy between the support and nano-Au.The performance results of four catalysts for electrocatalytic reduction of CO2 show that Au/CB catalyst has better stability.In the 28-hour stability test,the Faraday efficiency of CO decreased by only 5%.Au/CNT catalyst has the highest catalytic activity and selectivity.The initial voltage is only-0.4 V,and the Faraday efficiency of the reduction product CO is about 100%.In comparison,the Au/GC and Au/MC catalysts have low CO2 reactivity and poor selectivity,and the selectivity to CO in stability tests was reduced to zero.
作者 高明洋 朱英明 梁斌 GAO Ming-yang;ZHU Ying-ming;LIANG Bin(School of Chemical Engineering,Sichuan University,Chengdu 610207,China;Institute of New Energy and Low-Carbon Technology,Sichuan University,Chengdu 610207,China)
出处 《化学试剂》 CAS 北大核心 2020年第8期887-892,共6页 Chemical Reagents
基金 国家自然科学基金资助项目(21576169) 中央高校基本科研业务费专项资金资助项目 国家留学基金委(CSC)国际清洁能源拔尖创新人才培养项目(iCET,2019)。
关键词 载体 纳米金 电催化还原 二氧化碳 碳纳米管 炭黑 法拉第效率 support Au nanoparticles electrocatalytic reduction carbon dioxide carbon nanotubes carbon black Faraday efficiency
  • 相关文献

参考文献2

二级参考文献24

  • 1姜瑞霞,谢在库.尿素直接醇解法合成碳酸二甲酯催化剂研究进展[J].工业催化,2006,14(4):10-13. 被引量:7
  • 2ONO Y. Dimethyl carbonate for environmentally begin re- action [J]. Pure Appl. Chem., 1996,68 ( 2 ) :367-375.
  • 3PACHECO M A, MARSHALL C L. Reviews of dimethyl carbonate manufacture and its characteristics as a fuel ad- ditive [J]. Energy. Fuels, 1997,11 ( 1 ) : 1-29.
  • 4DELLEDONNE D, RIVETTI F, ROMANO U. Develop- ments in the production and application of dimethylcar- bonate [J]. Appl. Catal. A : General, 2001,221 ( 1 ) : 241 - 251.
  • 5ONO Y. Catalysis in the production and reactions of dim- ethyl carbonate, an environmentally benign building block [J]. Appl. Catal. A : General, 1997,155 ( 2 ) : 133-166.
  • 6FU Yue, BABA T, ONO Y. Vapor-phase reactions of cate- chol with dimethyl carbonate, part I O-methylation of catechol over alumina [J 3. Appl. Catal. A:General, 1998, 166(2) :419-424.
  • 7BOHM S,BUYSCH H J,KRIMM H. Process for the prep- aration of dimethyl carbonate : US, 4 335 051 [P]. 1982- 06-15.
  • 8KNIFTON J F. Process for cogeneration of ethylene glycoland dimethyl carbonate : US,5 214 182 [P]. 1993-05-25.
  • 9CURNUTT G L. Catalytic vapor phase process for produ- cing dihydrocarbyl carbonates : US,5 004 827 [P]. 1991 - 04 -02.
  • 10KIZLINK J, PASTUCHA I. Preparation of dimethyl car- bonate from methanol and carbon dioxide in the pres- enee of Sn( IV ) and Ti( IV ) alkoxides and metal ace- tates [J]. Collect. Czech. Chem. Commun., 1995, 60 (4) :687-692.

共引文献7

同被引文献22

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部