期刊文献+

PEO基聚合物电解质及其锂硫电池性能研究 被引量:2

Poly(ethylene oxide) Based Polymer Electrolytes for All-Solid-State Li-S Batteries
下载PDF
导出
摘要 锂硫电池由于具有高的理论比能量引起了广泛关注,然而传统液态锂硫电池由于多硫化物的"穿梭效应"以及安全问题而限制了其应用,全固态锂硫电池可显著提高电池安全性能并有望解决多硫化物的穿梭问题.本文采用传统的溶液浇铸法制备了具有不同的[EO]/[Li+]的PEO-Li TFSI聚合物电解质,并将其应用于锂硫电池.研究发现,虽然[EO]/[Li+]=8的聚合物电解质具有更高的离子电导率,但是[EO]/[Li+]=20的电解质与金属锂负极间的界面阻抗更低,界面稳定性更好. Li|PEO-Li TFSI([EO]/[Li+]=20)|Li对称电池在60℃,电流密度为0.1 m A·cm-2时可稳定循环超过300 h,而Li|PEO-Li TFSI ([EO]/[Li+]=8)|Li对称电池循环75 h就出现了短路现象.基于PEO-Li TFSI([EO]/[Li+]=20)电解质的锂硫电池首圈放电比容量为934 m Ah·g^-1,循环16圈后放电比容量为917 m Ah·g^-1以上.而基于PEO-Li TFSI ([EO]/[Li+]=8)电解质的锂硫电池,由于与锂负极较低的界面稳定性不能够正常循环,首圈就出现了严重过充现象. In recent years, research on lithium-sulfur(Li-S) batteries has received much attention because the sulfur positive electrode and the lithium metal negative electrode produce a high theoretical specific capacity(lithium metal ~ 3800 m Ah·g^-1, sulfur ~ 1675 m Ah·g^-1). In addition, sulfur is considered to be the most promising cathode material for secondary lithium batteries, due to its advantages of low price and environmental friendly. However, the practical application of conventional liquid Li-S batteries is still obstructed by several critical issues, such as lithium ploysulfides shuttle effect, long-term stability of lithium metal anode with organic liquid electrolytes, and the safety concerns related to the lithium anode and liquid electrolyte. All-solid-state Li-S batteries using solid state electrolytes are considered as one of the most promising techniques to address the safety challenges of lithium ion batteries. Herein poly(ethylene oxide)(PEO)-based solid polymer electrolytes were prepared and investigated as electrolyte membranes for all-solid-state Li-S batteries. PEO/Li TFSI polymer electrolytes with different [EO]/[Li+] ratios were prepared and applied to Li-S batteries. It is found that although the PEO/Li TFSI([EO]/[Li+] = 8) electrolyte had higher ionic conductivity, the PEO/Li TFSI([EO]/[Li+] = 20) electrolyte resulted in lower interfacial resistance and higher interfacial stability with lithium anode. The Li|PEO/Li TFSI([EO]/[Li+] = 20) |Li symmetric cell exhibited very stable voltage evolution without obvious erratic values or Li infiltration even being cycled for over 300 h at 60 ℃ and current density of 0.1 m A·cm-2. However, the PEO/Li TFSI([EO]/[Li+] = 8) based one failed due to intern short circuit after being cycled for less than 75 h. The polymer Li-S cells comprising PEO/Li TFSI([EO]/[Li+] =20) electrolyte delivered a high first discharge capacity of 934 m Ah·g^-1 and good cycling stability with a capacity retention of 917 m Ah·g^-1 after 16 cycles at 60 ℃. In contrast, the PEO/Li TFSI([EO]/[Li+] = 8) electrolyte based cell was not able to be charged normally and severe overcharge occurred even at the first cycle due to the poor interfacial stability of PEO/Li TFSI([EO]/[Li+] =8) electrolyte with lithium anode.
作者 李雪 龚正良 LI Xue;GONG Zheng-liang(College of Energy,Xiamen University,Xiamen 361005,Fujian,China)
出处 《电化学》 CAS CSCD 北大核心 2020年第3期338-346,共9页 Journal of Electrochemistry
基金 国家自然科学基金项目(No.21875196,No.21761132030,No.U1732121) 福建省引导性计划项目(No.2019H0003) 厦门大学大学生创新创业训练计划项目(No.2017X0280)资助。
关键词 锂硫电池 聚合物固体电解质 聚氧化乙烯 界面稳定性 Li-S batteries solid polymer electrolyte polyethylene oxide interfacial stability
  • 相关文献

参考文献3

二级参考文献50

  • 1袁余斌,聂进.全氟烷基磺酰亚胺配合物及其催化应用[J].有机化学,2004,24(8):857-863. 被引量:11
  • 2CAIRNS E J, ALBERTUS R Batteries for electric and hybird-electric vehicles[J]. The Annual Review of Chemical and Biomolecular Engineering, 2010, 1: 299-320.
  • 3MANTHIRAM A, FU Y Z, SU Y S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2013, 46 (5): 1125-1134.
  • 4EVERS S, NAZAR L F. New approaches for high energy density lithium-sulfur battery cathodes[J]. Accounts of Chemical Research, 2013, 46 (5).. 1135-1143.
  • 5YE X M, MA J, HU Y S, et al. MWCNT porous microspheres with an efficient 3D conductive network for high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2016, 4: 775-780.
  • 6FU Y Z, SU Y S, MANTHIRAM A. Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes[J]. AngewandteChemielntemationalEdition, 2013, 52.. 6930-6935.
  • 7SEH Z W, LI W Y, CHA J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications, 2013, 4.. 1331-1336.
  • 8Y1N Y X, XIN S, GUO Y G, et al. Lithium-sulfur batteries: Electrochemistry, materials, and prospects[J]. Angewandte Chemie International Edition, 2013, 52: 13186-13200.
  • 9FU Y Z, MANTHIRAM A. Core-shell structured sulfur-polypyrrole composite cathodes for lithiumsulfur batteries[J]. RSC Advances, 2012, 2: 5927-5929.
  • 10DING F, XU W, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. Journal of the American Chemical Society, 2013, 135: 4450-4456.

共引文献17

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部