期刊文献+

无机絮凝剂对污泥屈服应力的影响研究

Effect of Inorganic Flocculant on Yield Stress for Sludge
下载PDF
导出
摘要 污泥的流动行为对脱水、泵送、农业利用、土地填埋和焚烧具有重要影响。本文采用无机絮凝剂聚合氯化铝和氯化铁对污泥进行预处理,研究污泥絮凝剂对污泥流动行为的影响机理。同时采用三种不同方法分别计算污泥的静态屈服应力和动态屈服应力,以确定最佳的屈服应力确定方法。研究表明,污泥属于典型的非牛顿流体,具有触变特性。无机絮凝剂的添加提高了污泥絮体的强度,导致屈服应力和弹性模量显著增加,固相特性增强。对于具有触变性的污泥,根据剪切速率升高和下降的流动曲线分别计算得到的动态屈服应力相差较大,而由应变扫描实验得到的静态屈服应力值与动态屈服应力接近。 Rheology behavior has significant effect on dewatering,pumping,agricultural utilization,landfill and incineration. Inorganic flocculant including polyaluminium chloride and ferric chloride were employed to treat sludge for revealing its effect mechanism on rheological behavior. Three different measurements were introduced to determine the static and dynamic yield stress of various sludge samples. Results showed inorganic flocculant could improve floc strength,lead to higher yield stress and elastic modulus,indicat the significant solid behavior. For the sludge with thixotropy characteristics,there were significant differences between the dynamic yield stresses which were obtained from rheogram of increased shear rate and decreased,respectively. And the static yield stress obtained from strain sweep was similar with the dynamic.
作者 冯国红 胡智 白天添 FENG Guohong;HU Zhi;BAI Tiantian(School of Environment&Safety,Taiyuan University of Science&Technology,Taiyuan 030024,China)
出处 《中央民族大学学报(自然科学版)》 2020年第3期14-20,共7页 Journal of Minzu University of China(Natural Sciences Edition)
基金 国家青年基金:软固体类凝胶材料过滤及压榨动力学机理研究(21606157) 山西省青年基金:城市生物质废弃物流动行为及过滤压榨机理研究(2015021034) 太原科技大学教学改革与研究项目:新工科背景下符合工程教育认证的环保设备设计立体化教学改革模式研究(201938)。
关键词 污泥 流变特性 屈服应力 触变 sludge rheology behavior yield stress thixotropy
  • 相关文献

参考文献1

二级参考文献18

  • 1苏凤宜,邢新会,孙旭临.过氧乙酸对剩余污泥的减容研究[J].高校化学工程学报,2004,18(4):471-476. 被引量:21
  • 2Qi Y, Thapa K B, Hoadley A F A. Application of filtration aids for improving sludge dewatering properties.a review [J]. ChemEng J, 2011, 171(2): 373-384.
  • 3Qi Y, Thapa K B, Hoadley A F A. Benefit of lignite as a filter aid for dewatering of digested sewage sludge demonstrated in pilotscale trials [J]. Chem Eng J, 2011, 166(2): 504-510.
  • 4Neyens E, Baeyens J. A review of thermal sludge pre-treatment processes to improve dewaterability [J]. J Hazard Mater, 2003,98(1-3): 51-67.
  • 5Novak J T, Agerbaek M L, Sorensen B L, et al. Conditioning, filtering, and expressing waste activated sludge [J]. J Environ Eng,1999, 125(9): 816-824.
  • 6Raynaud M, Heritiera P, Baudez J C, et al. Experimental characterisation of activated sludge behavior during mechanical expression[J]. Process Saf Environ, 2010, 88(3): 200-206.
  • 7Raynaud M, Vaxelaire J, Heritiera P, et al. Activated sludge dewatering in a filtration compression cell: deviations in comparison tothe classical theory [J]. Asia-Pac, J Chem Eng, 2010, 5(5): 785-790.
  • 8Sveegaard S G, Keiding K, Christensen M L. Compression and swelling of activated sludge cakes during dewatering [J]. Water Res,2012, 46(16): 4999 -5008.
  • 9Chang I L, Chu C P, Lee D J, et al. Polymer dose effects on filtration followed by expression of clay slurries [J]. Environ SciTechnol, 1997, 185(2): 335-345.
  • 10Chang I L, Lee D J. Ternary expression stage in biological sludge dewatering [J]. Water Res, 1998, 32(3): 905-915.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部