摘要
目的:构建人工智能辅助诊断系统,自动发现胃溃疡病灶,鉴别胃良性溃疡与恶性溃疡。方法:收集武汉大学人民医院消化内镜中心2016年11月—2019年4月拍摄的胃镜图片1885张,其中正常胃黏膜图片636张、良性胃溃疡图片630张、恶性胃溃疡图片619张。其中1735张为训练集,150张为测试集,分别将图片输入基于fastai框架的Res-net50模型、基于Keras框架的Res-net50模型和基于Keras框架的VGG-16模型进行训练。分别构建正常胃黏膜与良性溃疡、正常胃黏膜与恶性溃疡、良性与恶性溃疡3个单独的二元分类模型。结果:VGG-16模型表现出了最好的结果,验证集验证模型区分正常黏膜与良性溃疡、正常黏膜与恶性溃疡、良性与恶性溃疡的精确度分别为98.0%、98.0%和85.0%。结论:本研究获得的模型在发现溃疡病灶上具有较好的能力,有望应用于临床辅助溃疡病灶检出并鉴别良恶性溃疡。
Objective To construct an artificial intelligence-assisted diagnosis system to detect gastric ulcer lesions and identify benign and malignant gastric ulcers automatically.Methods A total of 1885 endoscopy images were collected from November 2016 to April 2019 in the Digestive Endoscopy Center of Renmin Hospital of Wuhan University.Among them,636 were normal images,630 were with benign gastric ulcers,and 619 were with malignant gastric ulcers.A total of 1735 images belonged to training data set and 150 images were used for validation.These images were input into the Res-net50 model based on the fastai framework,the Res-net50 model based on the Keras framework,and the VGG-16 model based on the Keras framework respectively.Three separate binary classification models of normal gastric mucosa and benign ulcers,normal gastric mucosa and malignant ulcers,and benign and malignant ulcers were constructed.Results The VGG-16 model showed the best ability of classification.The accuracy of the validation set was 98.0%,98.0%and 85.0%,respectively,for distinguishing normal gastric mucosa from benign ulcers,normal gastric mucosa from malignant ulcers,and benign ulcers from malignant ulcers.Conclusion The artificial intelligence-assisted diagnosis system obtained in this study shows noteworthy ability of detection of ulcerous lesions,and is expected to be used in clinical to assist doctors to detect ulcer and identify benign and malignant ulcers.
作者
黄丽
李艳霞
吴练练
胡珊
陈奕云
张军
安萍
于红刚
Huang Li;Li Yanxia;Wu Lianlian;Hu Shan;Chen Yiyun;Zhang Jun;An Ping;Yu Honggang(Department of Gastroenterology,Renmin Hospital of Wuhan University,Wuhan 430060,China;Key Laboratory of Hubei Province for Digestive Disease,Wuhan 430060,China;Wuhan EndoAngel Medical Technology Co.,Ltd.,Wuhan 430000,China;College of Resources and Environment,Wuhan University,Wuhan 430079,China)
出处
《中华消化内镜杂志》
CSCD
北大核心
2020年第7期476-480,共5页
Chinese Journal of Digestive Endoscopy
基金
国家自然科学基金(81672387)
中央高校基本科研业务费专项资金(20422018kf1035)
湖北省自然科学基金(2016CFA066)
湖北省重大科技创新项目(2018-916-000-008)
湖北省消化疾病微创诊疗医学临床研究中心项目(2018BCC337)。
关键词
胃溃疡
内窥镜检查
人工智能
诊断
鉴别
Stomach ulcer
Endoscopy
Artificial intelligence
Diagnosis,differential